# Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium

Bollettino dell'Unione Matematica Italiana (2007)

- Volume: 10-B, Issue: 3, page 521-533
- ISSN: 0392-4033

## Access Full Article

top## Abstract

top## How to cite

topBerti, Alessia. "Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 521-533. <http://eudml.org/doc/290438>.

@article{Berti2007,

abstract = {The reflection-transmission problem of time-harmonic waves in a viscoelastic, anisotropic and stratified solid is examined. The medium is supposed to occupy the whole space. The waves are sent either from upwards or downwards with oblique incidence. The scattering matrix is defined by generalizing the procedure followed in the scalar case, namely, when the solid is isotropic and the wave incidence is normal. Existence, uniqueness and properties of the scattering matrix are discussed.},

author = {Berti, Alessia},

journal = {Bollettino dell'Unione Matematica Italiana},

language = {eng},

month = {10},

number = {3},

pages = {521-533},

publisher = {Unione Matematica Italiana},

title = {Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium},

url = {http://eudml.org/doc/290438},

volume = {10-B},

year = {2007},

}

TY - JOUR

AU - Berti, Alessia

TI - Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium

JO - Bollettino dell'Unione Matematica Italiana

DA - 2007/10//

PB - Unione Matematica Italiana

VL - 10-B

IS - 3

SP - 521

EP - 533

AB - The reflection-transmission problem of time-harmonic waves in a viscoelastic, anisotropic and stratified solid is examined. The medium is supposed to occupy the whole space. The waves are sent either from upwards or downwards with oblique incidence. The scattering matrix is defined by generalizing the procedure followed in the scalar case, namely, when the solid is isotropic and the wave incidence is normal. Existence, uniqueness and properties of the scattering matrix are discussed.

LA - eng

UR - http://eudml.org/doc/290438

ER -

## References

top- BURRIDGE, R., The Gelfand-Levitan, the Marchenko and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of implulse-response problems, Wave Motion, 2 (4) (1980), 305-323. Zbl0444.45010MR593133DOI10.1016/0165-2125(80)90011-6
- CAVIGLIA, C. - MORRO, M., Existence and uniqueness in the reflection-transmission problem, Quart. J. Mech. Appl. Math., 52 (4) (1999), 543-564. Zbl0962.74028MR1730008DOI10.1093/qjmam/52.4.543
- CAVIGLIA, C. - MORRO, M., Existence and uniqueness of the solution in the frequency domain for the reflection-transmission problem in a viscoelastic layer, Arch. Mech., 56 (1) (2004), 59-82. Zbl1080.74030MR2044109
- CODDINGTON, E. A. - LEVINSON, N., Theory of ordinary differential equations, International series in Pure and Applied Mathematics, 1955. MR69338
- DEIFT, P. - TRUBOWITZ, E., Inverse scattering on the line, Comm. Pure Appl. Math., 32 (2) (1979), 121-251. Zbl0388.34005MR512420DOI10.1002/cpa.3160320202
- DESTRADE, M. - MARTIN, P. A. - TING, T. C. T., The incompressible limit in linear anisotropic elasticity with applications to surface waves and elastostatic, J. Mech. Phys. Solids, 50 (7) (2002) 1453-1468. Zbl1038.74008MR1903721DOI10.1016/S0022-5096(01)00121-1
- ERINGEN, A. C., Continuum Physics. Vol II Continuum Mechanics of single-substance bodies, Academic Press, New York - London, 1975. MR468443
- FABRIZIO, M. - MORRO, A., Mathematical problems in linear viscoelasticity, Am. Math. Soc. Transl., 65 (2) (1967), 139-166. MR1153021DOI10.1137/1.9781611970807
- FADDEEV, L. D., Properties of the S-matrix of the one-dimensional Schrödinger equation, Am. Math. Soc. Transl., 65 (2) (1967), 139-166.
- FU, Y. - MIELKE, A., A new identify for the surface-impedance matrix and its application to the determination of surface-wave speeds, Comm. Pure Appl. Math., 32 (2) (1979), 121-251.
- GRINBERG, N. I., Inverse scattering problem for an elastic layered medium, Inverse Problems, 7 (4) (1991), 567-576. Zbl0738.73020MR1122037
- LANCASTER, P. - TISMENETSKY, M., The theory of matrices, Academic, Orlando1985. Zbl0558.15001MR792300
- STROH, A. N., Steady state problems in anisotropic elasticity, J. Math. and Phys., 41 (1962), 77-103. Zbl0112.16804MR139306
- SYLVESTER, J. - WINEBRENNER, D. - GYLYS-COLWELL, F., Layer stripping for the Helmholtz equation, SIAM J. Appl. Math., 56 (3) (1996), 736-754. Zbl0851.34011MR1389751DOI10.1137/S0036139995280257
- SYLVESTER, J. - WINEBRENNER, D., Linear and nonlinear inverse scattering, SIAM J. Appl. Math., 59 (2) (1999), 669-699. Zbl0930.34066MR1654391DOI10.1137/S0036139997319773

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.