Computation of Biharmonic Poisson Kernel for the Upper Half Plane
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 769-783
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAbkar, Ali. "Computation of Biharmonic Poisson Kernel for the Upper Half Plane." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 769-783. <http://eudml.org/doc/290442>.
@article{Abkar2007,
abstract = {We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.},
author = {Abkar, Ali},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {769-783},
publisher = {Unione Matematica Italiana},
title = {Computation of Biharmonic Poisson Kernel for the Upper Half Plane},
url = {http://eudml.org/doc/290442},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Abkar, Ali
TI - Computation of Biharmonic Poisson Kernel for the Upper Half Plane
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 769
EP - 783
AB - We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.
LA - eng
UR - http://eudml.org/doc/290442
ER -
References
top- ABKAR, A., On the mean convergence of biharmonic functions, J. Sci. I.R. Iran, 17 (2006), 337-342. MR2517972
- ABKAR, A. - HEDENMALM, H., A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math.26 (2001), 305-324. Zbl1009.31001MR1833243
- GARABEDIAN, P., Partial Differential Equations, John Wiley and Sons, Inc., New York-London-Sydney, (1964). Zbl0124.30501MR162045
- GARNETT, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
- GARNETT, J. B. - MARSHALL, D. E., Harmonic measure, Cambridge University Press, London, 2005. MR2150803DOI10.1017/CBO9780511546617
- HEDENMALM, H., A computation of Green function for the weighted biharmonic operators con , Duke Math. J.75, no. 1 (1994) 51-78. MR1284815DOI10.1215/S0012-7094-94-07502-9
- RANSFORD, T., Potential theory in the complex plane, Cambridge University Press, London Mathematical Society Student Texts28, 1995. Zbl0828.31001MR1334766DOI10.1017/CBO9780511623776
- RUDIN, W., Real and complex analysis, McGraw-Hill Book Company, Singapore, 1986. Zbl0142.01701MR344043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.