Identità Binomiali e Numeri Armonici

Wenchang Chu; Livia De Donno

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 1, page 213-235
  • ISSN: 0392-4033

Abstract

top
Several classical identilies on harmonic numbers are demonstrated by means of Newton's derivative operator on binomial coefficients.

How to cite

top

Chu, Wenchang, and De Donno, Livia. "Identità Binomiali e Numeri Armonici ." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 213-235. <http://eudml.org/doc/290447>.

@article{Chu2007,
abstract = {Numerose identità classiche sui numeri armonici sono mostrate tramite l'operatore di derivazione di Newton ai coefficienti binomiali.},
author = {Chu, Wenchang, De Donno, Livia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {2},
number = {1},
pages = {213-235},
publisher = {Unione Matematica Italiana},
title = {Identità Binomiali e Numeri Armonici },
url = {http://eudml.org/doc/290447},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Chu, Wenchang
AU - De Donno, Livia
TI - Identità Binomiali e Numeri Armonici
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/2//
PB - Unione Matematica Italiana
VL - 10-B
IS - 1
SP - 213
EP - 235
AB - Numerose identità classiche sui numeri armonici sono mostrate tramite l'operatore di derivazione di Newton ai coefficienti binomiali.
LA - ita
UR - http://eudml.org/doc/290447
ER -

References

top
  1. AHLGREN, S. - EKHAD, S. B. - ONO, K. - ZEILBERGER, D., A binomial coefficient identity associated to a conjecture of Beukers, The Electronic J. Combinatorics, 5 (1998), #R10. Zbl0885.05017MR1600106
  2. AHLGREN, S. - ONO, K., A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 518 (2000), 187-212. Zbl0940.33002MR1739404DOI10.1515/crll.2000.004
  3. ANDREWS, G. E. - UCHIMURA, K., Identities in combinatorics IV: differentation and harmonic numbers, Utilitas Mathematica, 28 (1985), 265-269. Zbl0595.33005MR821962
  4. BENJAMIN, A. T. - PRESTON, G. O. - QUINN, J. J., A Stirling Encounter with Harmonic Numbers, Mathematics Magazine, 75:2 (2002), 95-103. MR1573592
  5. BEUKERS, F., Another congruence for Apéry numbers, J. Number Theory, 25 (1987), 201-210. Zbl0614.10011MR873877DOI10.1016/0022-314X(87)90025-4
  6. CHU, W., Binomial convolutions and hypergeometric identities, Rend. Circolo Mat. Palermo, XLIII (1994, serie II), 333-360. Zbl0835.33002MR1344873DOI10.1007/BF02844247
  7. CHU, W., A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apéry numbers, The electronic journal of combinatorics, 11 (2004), #N15. MR2114196
  8. CHU, W., Harmonic Number Identities and Hermite-Padé Approximations to the Logarithm Function, Journal of Approximation Theory, 137:1 (2005), 42-56. Zbl1082.41014MR2179622DOI10.1016/j.jat.2005.07.008
  9. CHU, W. - DE DONNO, L., Hypergeometric Series and Harmonic Number Identities, Advances in Applied Mathematics, 34:1 (2005), 123-137. Zbl1062.05017MR2102278DOI10.1016/j.aam.2004.05.003
  10. CHU, W. - DE DONNO, L., Transformation on infinite double series and applications to harmonic number Identities, AAECC: Applicable Algebra in Engineering, Communication and Computing, 15:5 (2005), 339-348. Zbl1062.33022MR2122310DOI10.1007/s00200-004-0165-5
  11. COMTET, L., Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974. MR460128
  12. DRIVER, K. - PRODINGER, H. - SCHNEIDER, C. - WEIDEMAN, J., Padé approximations to the logarithm II: Identities, recurrences and symbolic computation, To appear in ``The Ramanujan Journal''. MR2267670DOI10.1007/s11139-006-6503-4
  13. DRIVER, K. - PRODINGER, H. - SCHNEIDER, C. - WEIDEMAN, J., Padé approximations to the logarithm III: Alternative methods and additional results, To appear in ``The Ramanujan Journal''. MR2293791DOI10.1007/s11139-006-0144-5
  14. GOULD, H. W., Combinatorial Identities, Morgantown, 1972. Zbl0241.05011MR354401
  15. GRAHAM, R. L. - KNUTH, D. E. - PATASHNIK, O., Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989. MR1001562
  16. LYONS, R. - PAULE, P. - RIESE, A., A computer proof of a series evaluation in terms of harmonic number, Appl. Algebra Engrg. Comm. Comput., 13:4 (2002), 327-333. Zbl1011.33003MR1953199DOI10.1007/s00200-002-0107-z
  17. LYONS, R. - STEIF, J., Stationary determinantal process: Phase multiplicity, Bernoullicity, entropy and domination, Duke Math. J., 120:3 (2003), 515-575. Zbl1068.82010MR2030095DOI10.1215/S0012-7094-03-12032-3
  18. MORTENSON, E., Supercongruences between truncated F 1 2 hypergeometric functions and their Gaussian analogs, Trans. Amer. Math. Soc., 355:3 (2002), 987-1007. Zbl1074.11044MR1938742DOI10.1090/S0002-9947-02-03172-0
  19. MORTENSON, E., A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. of Number theory, 99 (2003), 139-147. Zbl1074.11045MR1957248DOI10.1016/S0022-314X(02)00052-5
  20. NEWTON, ISAAC, Mathematical Papers: Vol. III, D. T. Whiteside ed., Cambridge Univ. Press, London, 1969. MR263593
  21. PAULE, P. - SCHNEIDER, C., Computer proofs of a new family of harmonic number identities, Adv. in Appl. Math., 31 (2003), 359-378. Zbl1039.11007MR2001619DOI10.1016/S0196-8858(03)00016-2
  22. WEIDEMAN, J. A. C., Padé approximations to the logarithm I: Derivation via differential equations, Quaestiones Mathematicae, 28 (2005), 375-390. MR2164379DOI10.2989/16073600509486135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.