A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
M. Chipot; I. Shafrir; G. Vergara Caffarelli
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 1, page 197-221
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChipot, M., Shafrir, I., and Vergara Caffarelli, G.. "A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 197-221. <http://eudml.org/doc/290458>.
@article{Chipot2008,
abstract = {The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences to a stationary point of the energy functional.},
author = {Chipot, M., Shafrir, I., Vergara Caffarelli, G.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {197-221},
publisher = {Unione Matematica Italiana},
title = {A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions},
url = {http://eudml.org/doc/290458},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Chipot, M.
AU - Shafrir, I.
AU - Vergara Caffarelli, G.
TI - A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 197
EP - 221
AB - The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences to a stationary point of the energy functional.
LA - eng
UR - http://eudml.org/doc/290458
ER -
References
top- BERTSCH, M. - PODIO-GUIDUGLI, P. - VALENTE, V., On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl., 179 (2001), 331-360. Zbl1097.74017MR1848770DOI10.1007/BF02505962
- BETHUEL, F. - BREZIS, H. - COLEMAN, B. D. - HÉLEIN, F., Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders, Arch. Ration. Mech. Anal., 118 (1992), 149-168. Zbl0825.76062MR1158933DOI10.1007/BF00375093
- BROWN, W. F., Micromagnetics, John Wiley and Sons (Interscience), 1963.
- BROWN, W. F., Magnetoelastic Interactions, Springer Tracts in Natural Philosophy, 9, Springer Verlag, 1966.
- DESIMONE, A. - DOLZMANN, G., Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120. Zbl0923.73079MR1657391DOI10.1007/s002050050114
- DESIMONE, A. - JAMES, R. D., A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320. Zbl1008.74030MR1892979DOI10.1016/S0022-5096(01)00050-3
- HE, S., Modélisation et simulation numérique de matériaux magnétostrictifs, PhD thesis, Université Pierre et Marie Currie, 1999.
- KINDERLEHRER, D., Magnetoelastic interactions. Variational methods for discontinuous structures, Prog. Nonlinear Differential Equations Appl., BirkhauserBasel, 25, (1996), 177-189. MR1414500
- VALENTE, V. - VERGARA CAFFARELLI, G., On the dynamics of magneto-elastic interations: existence of weak solutions and limit behaviors, Asymptotic Analysis, 51 (2007), 319-333. Zbl1125.35100MR2321728
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.