Bounded Solutions for the Degasperis-Procesi Equation
Giuseppe Maria Coclite; Kenneth H. Karlsen
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 2, page 439-453
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCoclite, Giuseppe Maria, and Karlsen, Kenneth H.. "Bounded Solutions for the Degasperis-Procesi Equation." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 439-453. <http://eudml.org/doc/290459>.
@article{Coclite2008,
abstract = {This paper deals with the well-posedness in $L^\{1\} \cap L^\{\infty\}$ of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.},
author = {Coclite, Giuseppe Maria, Karlsen, Kenneth H.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {439-453},
publisher = {Unione Matematica Italiana},
title = {Bounded Solutions for the Degasperis-Procesi Equation},
url = {http://eudml.org/doc/290459},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Coclite, Giuseppe Maria
AU - Karlsen, Kenneth H.
TI - Bounded Solutions for the Degasperis-Procesi Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 439
EP - 453
AB - This paper deals with the well-posedness in $L^{1} \cap L^{\infty}$ of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.
LA - eng
UR - http://eudml.org/doc/290459
ER -
References
top- CAMASSA, R. - HOLM, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. Zbl0972.35521MR1234453DOI10.1103/PhysRevLett.71.1661
- COCLITE, G. M. - HOLDEN, H. - KARLSEN, K. H., Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. Zbl1100.35106MR2192287DOI10.1137/040616711
- COCLITE, G. M. - HOLDEN, H. - KARLSEN, K. H., Wellposedness for a parabolic-elliptic system, Discrete Contin. Dynam. Systems, 13 (2005), 659-682. Zbl1082.35056MR2152336DOI10.3934/dcds.2005.13.659
- COCLITE, G. M. - KARLSEN, K. H., On the wellposedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. Zbl1090.35142MR2204675DOI10.1016/j.jfa.2005.07.008
- COCLITE, G. M. - KARLSEN, K. H., On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation, J. Differential Equations, 233 (2007), 142-160. Zbl1133.35028MR2298968DOI10.1016/j.jde.2006.11.008
- COCLITE, G. M. - KARLSEN, K. H., A Semigroup of Solutions for the Degasperis-Procesi Equation, WASCOM 2005-13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ (2006), 128-133. Zbl1345.35123MR2172828DOI10.1142/9789812773616_0019
- DEGASPERIS, A. - HOLM, D. D. - HONE, A. N. W., Integrable and non-integrable equations with peakons, Nonlinear physics: theory and experiment, II (Gallipoli, 2002), World Sci. Publishing, River Edge, NJ (2003), 37-43. Zbl1053.37039MR2028761DOI10.1142/9789812704467_0005
- DEGASPERIS, A. - HOLM, D. D. - KHON, A. N. I., A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133 (2002), 170-183. MR2001531DOI10.1023/A:1021186408422
- DEGASPERIS, A. - PROCESI, M., Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Sci. Publishing, River Edge, NJ (1999), 23-37. Zbl0963.35167MR1844104
- COCLITE, G. M. - KARLSEN, K. H. - RISEBRO, N. H., Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80-105. Zbl1246.76114MR2387906DOI10.1093/imanum/drm003
- DAI, H.-H. - HUO, Y., Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. MR1811323DOI10.1098/rspa.2000.0520
- ESCHER, J. - LIU, Y. - YIN, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. Zbl1126.35053MR2271927DOI10.1016/j.jfa.2006.03.022
- ESCHER, J. - LIU, Y. - YIN, Z., Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. Zbl1124.35041MR2305931DOI10.1512/iumj.2007.56.3040
- ESCHER, J. - YIN, Z., On the initial boundary value problems for the Degasperis-Procesi equation, Phys. Lett. A, 368 (2007), 69-76. Zbl1209.35114MR2328777DOI10.1016/j.physleta.2007.03.073
- FUCHSSTEINER, B. - FOKAS, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. Zbl1194.37114MR636470DOI10.1016/0167-2789(81)90004-X
- HOEL, H. A., A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Diff. Eqns., 2007 (2007), 1-22. Zbl1133.35430MR2328701
- HOLM, D. D. - STALEY, M. F., Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2003 (2), 323-380. Zbl1088.76531MR2031278DOI10.1137/S1111111102410943
- KRUZÏKOV, S. N., First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243.
- KENIG, C. E. - PONCE, C. E. - VEGA, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. Zbl0808.35128MR1211741DOI10.1002/cpa.3160460405
- JOHNSON, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves., J. Fluid Mech., 455 (2002), 63-82. Zbl1037.76006MR1894796DOI10.1017/S0022112001007224
- LIU, Y. - YIN, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. Zbl1131.35074MR2249792DOI10.1007/s00220-006-0082-5
- LUNDMARK, H. - SZMIGIELSKI, J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. Zbl1041.35090MR2036528DOI10.1088/0266-5611/19/6/001
- MURAT, F., L'injection du cône positif de dans est compacte pour tout , J. Math. Pures Appl. (9), 60 (1981), 309-322. MR633007
- MUSTAFA, O. G., A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14. Zbl1067.35078MR2122861DOI10.2991/jnmp.2005.12.1.2
- TARTAR, L., Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Pitman, Boston, Mass., IV (1979), 136-212. MR584398
- SCHONBEK, M. E., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. Zbl0496.35058MR668586DOI10.1080/03605308208820242
- YIN, Z., Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. Zbl1033.35121MR1994177DOI10.1016/S0022-247X(03)00250-6
- YIN, Z., On the Cauchy problem for an integrable equation with peakon solutions., Illinois J. Math., 47 (2003), 649-666. Zbl1061.35142MR2007229
- YIN, Z., Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. Zbl1062.35094MR2095454DOI10.1512/iumj.2004.53.2479
- YIN, Z., Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. Zbl1059.35149MR2065241DOI10.1016/j.jfa.2003.07.010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.