Bounded Solutions for the Degasperis-Procesi Equation

Giuseppe Maria Coclite; Kenneth H. Karlsen

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 439-453
  • ISSN: 0392-4041

Abstract

top
This paper deals with the well-posedness in L 1 L of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.

How to cite

top

Coclite, Giuseppe Maria, and Karlsen, Kenneth H.. "Bounded Solutions for the Degasperis-Procesi Equation." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 439-453. <http://eudml.org/doc/290459>.

@article{Coclite2008,
abstract = {This paper deals with the well-posedness in $L^\{1\} \cap L^\{\infty\}$ of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.},
author = {Coclite, Giuseppe Maria, Karlsen, Kenneth H.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {439-453},
publisher = {Unione Matematica Italiana},
title = {Bounded Solutions for the Degasperis-Procesi Equation},
url = {http://eudml.org/doc/290459},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Coclite, Giuseppe Maria
AU - Karlsen, Kenneth H.
TI - Bounded Solutions for the Degasperis-Procesi Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 439
EP - 453
AB - This paper deals with the well-posedness in $L^{1} \cap L^{\infty}$ of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.
LA - eng
UR - http://eudml.org/doc/290459
ER -

References

top
  1. CAMASSA, R. - HOLM, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. Zbl0972.35521MR1234453DOI10.1103/PhysRevLett.71.1661
  2. COCLITE, G. M. - HOLDEN, H. - KARLSEN, K. H., Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. Zbl1100.35106MR2192287DOI10.1137/040616711
  3. COCLITE, G. M. - HOLDEN, H. - KARLSEN, K. H., Wellposedness for a parabolic-elliptic system, Discrete Contin. Dynam. Systems, 13 (2005), 659-682. Zbl1082.35056MR2152336DOI10.3934/dcds.2005.13.659
  4. COCLITE, G. M. - KARLSEN, K. H., On the wellposedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. Zbl1090.35142MR2204675DOI10.1016/j.jfa.2005.07.008
  5. COCLITE, G. M. - KARLSEN, K. H., On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation, J. Differential Equations, 233 (2007), 142-160. Zbl1133.35028MR2298968DOI10.1016/j.jde.2006.11.008
  6. COCLITE, G. M. - KARLSEN, K. H., A Semigroup of Solutions for the Degasperis-Procesi Equation, WASCOM 2005-13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ (2006), 128-133. Zbl1345.35123MR2172828DOI10.1142/9789812773616_0019
  7. DEGASPERIS, A. - HOLM, D. D. - HONE, A. N. W., Integrable and non-integrable equations with peakons, Nonlinear physics: theory and experiment, II (Gallipoli, 2002), World Sci. Publishing, River Edge, NJ (2003), 37-43. Zbl1053.37039MR2028761DOI10.1142/9789812704467_0005
  8. DEGASPERIS, A. - HOLM, D. D. - KHON, A. N. I., A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133 (2002), 170-183. MR2001531DOI10.1023/A:1021186408422
  9. DEGASPERIS, A. - PROCESI, M., Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Sci. Publishing, River Edge, NJ (1999), 23-37. Zbl0963.35167MR1844104
  10. COCLITE, G. M. - KARLSEN, K. H. - RISEBRO, N. H., Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80-105. Zbl1246.76114MR2387906DOI10.1093/imanum/drm003
  11. DAI, H.-H. - HUO, Y., Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. MR1811323DOI10.1098/rspa.2000.0520
  12. ESCHER, J. - LIU, Y. - YIN, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. Zbl1126.35053MR2271927DOI10.1016/j.jfa.2006.03.022
  13. ESCHER, J. - LIU, Y. - YIN, Z., Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. Zbl1124.35041MR2305931DOI10.1512/iumj.2007.56.3040
  14. ESCHER, J. - YIN, Z., On the initial boundary value problems for the Degasperis-Procesi equation, Phys. Lett. A, 368 (2007), 69-76. Zbl1209.35114MR2328777DOI10.1016/j.physleta.2007.03.073
  15. FUCHSSTEINER, B. - FOKAS, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. Zbl1194.37114MR636470DOI10.1016/0167-2789(81)90004-X
  16. HOEL, H. A., A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Diff. Eqns., 2007 (2007), 1-22. Zbl1133.35430MR2328701
  17. HOLM, D. D. - STALEY, M. F., Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2003 (2), 323-380. Zbl1088.76531MR2031278DOI10.1137/S1111111102410943
  18. KRUZÏKOV, S. N., First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243. 
  19. KENIG, C. E. - PONCE, C. E. - VEGA, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. Zbl0808.35128MR1211741DOI10.1002/cpa.3160460405
  20. JOHNSON, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves., J. Fluid Mech., 455 (2002), 63-82. Zbl1037.76006MR1894796DOI10.1017/S0022112001007224
  21. LIU, Y. - YIN, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. Zbl1131.35074MR2249792DOI10.1007/s00220-006-0082-5
  22. LUNDMARK, H. - SZMIGIELSKI, J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. Zbl1041.35090MR2036528DOI10.1088/0266-5611/19/6/001
  23. MURAT, F., L'injection du cône positif de H - 1 dans W - 1 , q est compacte pour tout q < 2 , J. Math. Pures Appl. (9), 60 (1981), 309-322. MR633007
  24. MUSTAFA, O. G., A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14. Zbl1067.35078MR2122861DOI10.2991/jnmp.2005.12.1.2
  25. TARTAR, L., Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Pitman, Boston, Mass., IV (1979), 136-212. MR584398
  26. SCHONBEK, M. E., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. Zbl0496.35058MR668586DOI10.1080/03605308208820242
  27. YIN, Z., Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. Zbl1033.35121MR1994177DOI10.1016/S0022-247X(03)00250-6
  28. YIN, Z., On the Cauchy problem for an integrable equation with peakon solutions., Illinois J. Math., 47 (2003), 649-666. Zbl1061.35142MR2007229
  29. YIN, Z., Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. Zbl1062.35094MR2095454DOI10.1512/iumj.2004.53.2479
  30. YIN, Z., Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. Zbl1059.35149MR2065241DOI10.1016/j.jfa.2003.07.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.