Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors

Jan W. Cholewa; Radoslaw Czaja; Gianluca Mola

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 1, page 121-145
  • ISSN: 0392-4041

Abstract

top
Bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces. The case when the system exhibits merely some partial smoothing properties is also considered and applications to the sample problems are given.

How to cite

top

Cholewa, Jan W., Czaja, Radoslaw, and Mola, Gianluca. "Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 121-145. <http://eudml.org/doc/290463>.

@article{Cholewa2008,
abstract = {Bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces. The case when the system exhibits merely some partial smoothing properties is also considered and applications to the sample problems are given.},
author = {Cholewa, Jan W., Czaja, Radoslaw, Mola, Gianluca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {121-145},
publisher = {Unione Matematica Italiana},
title = {Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors},
url = {http://eudml.org/doc/290463},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Cholewa, Jan W.
AU - Czaja, Radoslaw
AU - Mola, Gianluca
TI - Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 121
EP - 145
AB - Bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces. The case when the system exhibits merely some partial smoothing properties is also considered and applications to the sample problems are given.
LA - eng
UR - http://eudml.org/doc/290463
ER -

References

top
  1. ARRIETA, J. M. - CHOLEWA, J. W. - DLOTKO, T. - RODRIÂGUEZ-BERNAL, A., Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663. Zbl1146.35015MR2351571DOI10.1002/mana.200510569
  2. AMANN, H., Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83. Zbl0564.35060MR799657DOI10.1515/crll.1985.360.47
  3. BABIN, A. V. - VISHIK, M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. Zbl0778.58002MR1156492
  4. CARVALHO, A. N. - CHOLEWA, J. W., Local well posedness for strongly damped wave equations with critical nonlinearities, Bulletin of the Australian Mathematical Society, 66 (2002), 443-463. Zbl1020.35059MR1939206DOI10.1017/S0004972700040296
  5. CARVALHO, A. N. - CHOLEWA, J. W., Attractors for strongly damped wave equations with critical nonlinearities, Pacific Journal of Mathematics, 207 (2002), 287-310. Zbl1060.35082MR1972247DOI10.2140/pjm.2002.207.287
  6. CARVALHO, A. N. - CHOLEWA, J. W., Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. Zbl1077.35031MR2022944DOI10.1016/j.jmaa.2005.02.024
  7. CHEN, S. - TRIGGIANI, R., Proof of two conjectures on structural damping for elastic systems: The case a=1/2, Lecture Notes in Mathematics1354, Springer, 1988, 234-256. MR996678DOI10.1007/BFb0089601
  8. CHOLEWA, J. W. - DLOTKO, T., Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. Zbl0954.35002MR1778284DOI10.1017/CBO9780511526404
  9. CONTI, M. - PATA, V. - SQUASSINA, M., Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215. Zbl1100.35018MR2207550DOI10.1512/iumj.2006.55.2661
  10. DUNG, L. - NICOLAENKO, B., Exponential attractors in Banach spaces, J. Dynam. Differential Equations, 13 (2001), 791-806. Zbl1040.37069MR1860286DOI10.1023/A:1016676027666
  11. EDEN, A. - FOIAS, C. - NICOLAENKO, B. - TEMAM, R., Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, Ltd., Chichester, 1994. Zbl0842.58056MR1335230
  12. EFENDIEV, M. - MIRANVILLE, A. - ZELIK, S., Exponential attractors for a nonlinear reaction-diffusion system in 3 , C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713- 718. Zbl1151.35315MR1763916DOI10.1016/S0764-4442(00)00259-7
  13. FABRIE, P. - GALUSINSKI, C. - MIRANVILLE, A. - ZELIK, S., Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Systems, 10 (2004), 211-238. Zbl1060.35011MR2026192DOI10.3934/dcds.2004.10.211
  14. GATTI, S. - GRASSELLI, M. - MIRANVILLE, A. - PATA, V., A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. Zbl1078.37047MR2170551DOI10.1090/S0002-9939-05-08340-1
  15. GATTI, S. - GRASSELLI, M. - PATA, V., Exponential attractors for a phase-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719- 754. Zbl1070.37056MR2086698DOI10.1512/iumj.2004.53.2413
  16. HALE, J. K., Asymptotic Behavior of Dissipative Systems, AMS, Providence, R.I., 1988. MR941371
  17. HENRY, D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
  18. LADYŽENSKAYA, O. A., Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. 
  19. LADYŽENSKAYA, O. A. - SOLONNIKOV, V. A. - URAL'CEVA, N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, AMS, Providence, R.I., 1967. MR241822
  20. LI, DE-SHENG - ZHONG, CHEN-KUI, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Equations, 149 (1998), 191-210. Zbl0912.35029MR1646238DOI10.1006/jdeq.1998.3429
  21. MÁLEK, J. - PRAŽAK, D., Large time behavior via the method of -trajectories, J. Diff. Equations, 181 (2002), 243-279. MR1907143DOI10.1006/jdeq.2001.4087
  22. MOLA, G., Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., to appear. Zbl1144.35354MR2373219DOI10.3934/cpaa.2008.7.317
  23. MOLA, G., Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, submitted. Zbl1185.35027MR2373219DOI10.3934/cpaa.2008.7.317
  24. PATA, V. - SQUASSINA, M., On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533. Zbl1068.35077MR2116726DOI10.1007/s00220-004-1233-1
  25. PATA, V. - ZELIK, S., Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. Zbl1113.35023MR2229785DOI10.1088/0951-7715/19/7/001
  26. PATA, V. - ZELIK, S., A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. Zbl1152.47046MR2289833DOI10.3934/cpaa.2007.6.481
  27. PATA, V. - ZUCCHI, A., Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. Zbl0999.35014MR1907454
  28. POLÁČIK, P., Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Handbook of Dynamical Systems Vol. 2, North-Holland, Amsterdam, 2002, 835-883. 
  29. TEMAM, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. Zbl0662.35001MR953967DOI10.1007/978-1-4684-0313-8
  30. TRIEBEL, H., Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978. MR500580
  31. VON WAHL, W., Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985, Springer-Verlag, Berlin, 1986, 254-266. MR872532DOI10.1007/BFb0099198
  32. WEBB, G. F., Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Can. J. Math., 32 (1980), 631-643. Zbl0414.35046MR586981DOI10.4153/CJM-1980-049-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.