Algebre di Koszul
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 2, page 429-437
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topConca, Aldo. "Algebre di Koszul." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 429-437. <http://eudml.org/doc/290466>.
@article{Conca2008,
author = {Conca, Aldo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {429-437},
publisher = {Unione Matematica Italiana},
title = {Algebre di Koszul},
url = {http://eudml.org/doc/290466},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Conca, Aldo
TI - Algebre di Koszul
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 429
EP - 437
LA - ita
UR - http://eudml.org/doc/290466
ER -
References
top- ANICK, D., A counterexample to a conjecture of Serre, Ann. of Math. (2), 115, no. 1 (1982), 1-33. Zbl0454.55004MR644015DOI10.2307/1971338
- BRUNS, W. - HERZOG, J. - VETTER, U., Syzygies and walks, ICTP Proceedings `Commutative Algebra', Eds. A. Simis, N. V. Trung, G. Valla, World Scientific1994, 36-57. MR1421076
- BACKELIN, J., A distributiveness property of augmented algebras and some related homological results, Ph.D. thesis, Stockholm University, 1982.
- BACKELIN, J. - FRÖBERG, R., Poincarè series of short Artinian rings. J. Algebra, 96, no. 2 (1985), 495-498. MR810542DOI10.1016/0021-8693(85)90023-7
- BACKELIN, J. - FRÖBERG, R., Veronese subrings, Koszul algebras and rings with linear resolutions. Rev. Roum. Pures Appl., 30 (1985), 85-97. MR789425
- CAVIGLIA, G., The pinched Veronese is Koszul. preprint2006, math. AC/0602487. Zbl1213.13003MR2563140DOI10.1007/s10801-009-0176-1
- CONCA, A., Gröbner bases for spaces of quadrics of low codimension. Adv. in Appl. Math., 24, no. 2 (2000), 111-124. Zbl1046.13001MR1748965DOI10.1006/aama.1999.0676
- CONCA, A., Gröbner bases for spaces of quadrics of codimension 3, preprint 2007, arXiv:0709.3917. MR2517993DOI10.1016/j.jpaa.2008.11.017
- CONCA, A. - ROSSI, M. E. - VALLA, G., Groöbner flags and Gorenstein algebras. Compositio Math., 129, no. 1 (2001), 95-121. Zbl1030.13005MR1856025DOI10.1023/A:1013160203998
- CONCA, A. - TRUNG, N. V. - VALLA, G., Koszul property for points in projective spaces, Math. Scand., 89 no. 2 (2001), 201-216. Zbl1025.13003MR1868173DOI10.7146/math.scand.a-14338
- EISENBUD, D. - REEVES, A. - TOTARO, B., Initial ideals, Veronese subrings, and rates of algebras, Adv. Math., 109 (1994), 168-187. Zbl0839.13013MR1304751DOI10.1006/aima.1994.1085
- FRÖBERG, R., Koszul algebras, in "Advances in Commutative Ring Theory", Proc. Fez Conf. 1997, Lecture Notes in Pure and Applied Mathematics, volume 205, Dekker Eds., 1999.
- HERZOG, J. - HIBI, T. - RESTUCCIA, G., Strongly Koszul algebras, Math. Scand., 86, no. 2 (2000), 161-178. Zbl1061.13008MR1754992DOI10.7146/math.scand.a-14287
- KEMPF, G., Syzygies for points in projective space, J. Algebra, 145 (1992), 219-223. Zbl0748.13006MR1144669DOI10.1016/0021-8693(92)90187-Q
- PARESCHI, G. - PURNAPRAJNA, B. P., Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math., 41, no. 2 (1997), 266-271. Zbl0916.14013MR1441677
- POLISHCHUK, A., On the Koszul property of the homogeneous coordinate ring of a curve, J. Algebra, 178, no. 1 (1995), 122-135. Zbl0861.14030MR1358259DOI10.1006/jabr.1995.1342
- POLISHCHUK, A., Koszul configurations of points in projective spaces. J. Algebra, 298, no. 1 (2006), 273-283. Zbl1100.13014MR2215128DOI10.1016/j.jalgebra.2005.06.026
- ROOS, J. E., A description of the homological behaviour of families of quadratic forms in four variables, in Syzygies and Geometry, Boston 1995, A. Iarrobino, A. Martsinkovsky and J. Weyman eds., pp. 86-95, Northeastern Univ.1995.
- ROOS, J. E. - STURMFELS, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 2 (1998), 141-146. Zbl0934.14033MR1646972DOI10.1016/S0764-4442(97)89459-1
- PARIS SERRE, J., Algébre locale. Multiplicités, Lecture Notes in Mathematics11, Springer, 1965. MR201468
- VISHIK, A. - FINKELBERG, M., The coordinate ring of general curve of genus is Koszul, J. Algebra, 162, no. 2 (1993), 535-539. Zbl0819.14008MR1254790DOI10.1006/jabr.1993.1269
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.