Algebre di Koszul

Aldo Conca

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 429-437
  • ISSN: 0392-4041

Abstract

top
The goal of the talk is to introduce and discuss the notion Koszul algebra in the commutative setting along with the associated notions of G-quadraticity and Koszul filtration. We present some results that appear in the papers [C, CTV, CRV] joint with M.E.Rossi, N.V.Trung and G.Valla. These results concern Koszul and G-quadratic properties of algebras associated with points, curves, cubics and spaces of quadrics of low codimension.

How to cite

top

Conca, Aldo. "Algebre di Koszul." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 429-437. <http://eudml.org/doc/290466>.

@article{Conca2008,
author = {Conca, Aldo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {429-437},
publisher = {Unione Matematica Italiana},
title = {Algebre di Koszul},
url = {http://eudml.org/doc/290466},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Conca, Aldo
TI - Algebre di Koszul
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 429
EP - 437
LA - ita
UR - http://eudml.org/doc/290466
ER -

References

top
  1. ANICK, D., A counterexample to a conjecture of Serre, Ann. of Math. (2), 115, no. 1 (1982), 1-33. Zbl0454.55004MR644015DOI10.2307/1971338
  2. BRUNS, W. - HERZOG, J. - VETTER, U., Syzygies and walks, ICTP Proceedings `Commutative Algebra', Eds. A. Simis, N. V. Trung, G. Valla, World Scientific1994, 36-57. MR1421076
  3. BACKELIN, J., A distributiveness property of augmented algebras and some related homological results, Ph.D. thesis, Stockholm University, 1982. 
  4. BACKELIN, J. - FRÖBERG, R., Poincarè series of short Artinian rings. J. Algebra, 96, no. 2 (1985), 495-498. MR810542DOI10.1016/0021-8693(85)90023-7
  5. BACKELIN, J. - FRÖBERG, R., Veronese subrings, Koszul algebras and rings with linear resolutions. Rev. Roum. Pures Appl., 30 (1985), 85-97. MR789425
  6. CAVIGLIA, G., The pinched Veronese is Koszul. preprint2006, math. AC/0602487. Zbl1213.13003MR2563140DOI10.1007/s10801-009-0176-1
  7. CONCA, A., Gröbner bases for spaces of quadrics of low codimension. Adv. in Appl. Math., 24, no. 2 (2000), 111-124. Zbl1046.13001MR1748965DOI10.1006/aama.1999.0676
  8. CONCA, A., Gröbner bases for spaces of quadrics of codimension 3, preprint 2007, arXiv:0709.3917. MR2517993DOI10.1016/j.jpaa.2008.11.017
  9. CONCA, A. - ROSSI, M. E. - VALLA, G., Groöbner flags and Gorenstein algebras. Compositio Math., 129, no. 1 (2001), 95-121. Zbl1030.13005MR1856025DOI10.1023/A:1013160203998
  10. CONCA, A. - TRUNG, N. V. - VALLA, G., Koszul property for points in projective spaces, Math. Scand., 89 no. 2 (2001), 201-216. Zbl1025.13003MR1868173DOI10.7146/math.scand.a-14338
  11. EISENBUD, D. - REEVES, A. - TOTARO, B., Initial ideals, Veronese subrings, and rates of algebras, Adv. Math., 109 (1994), 168-187. Zbl0839.13013MR1304751DOI10.1006/aima.1994.1085
  12. FRÖBERG, R., Koszul algebras, in "Advances in Commutative Ring Theory", Proc. Fez Conf. 1997, Lecture Notes in Pure and Applied Mathematics, volume 205, Dekker Eds., 1999. 
  13. HERZOG, J. - HIBI, T. - RESTUCCIA, G., Strongly Koszul algebras, Math. Scand., 86, no. 2 (2000), 161-178. Zbl1061.13008MR1754992DOI10.7146/math.scand.a-14287
  14. KEMPF, G., Syzygies for points in projective space, J. Algebra, 145 (1992), 219-223. Zbl0748.13006MR1144669DOI10.1016/0021-8693(92)90187-Q
  15. PARESCHI, G. - PURNAPRAJNA, B. P., Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math., 41, no. 2 (1997), 266-271. Zbl0916.14013MR1441677
  16. POLISHCHUK, A., On the Koszul property of the homogeneous coordinate ring of a curve, J. Algebra, 178, no. 1 (1995), 122-135. Zbl0861.14030MR1358259DOI10.1006/jabr.1995.1342
  17. POLISHCHUK, A., Koszul configurations of points in projective spaces. J. Algebra, 298, no. 1 (2006), 273-283. Zbl1100.13014MR2215128DOI10.1016/j.jalgebra.2005.06.026
  18. ROOS, J. E., A description of the homological behaviour of families of quadratic forms in four variables, in Syzygies and Geometry, Boston 1995, A. Iarrobino, A. Martsinkovsky and J. Weyman eds., pp. 86-95, Northeastern Univ.1995. 
  19. ROOS, J. E. - STURMFELS, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 2 (1998), 141-146. Zbl0934.14033MR1646972DOI10.1016/S0764-4442(97)89459-1
  20. PARIS SERRE, J., Algébre locale. Multiplicités, Lecture Notes in Mathematics11, Springer, 1965. MR201468
  21. VISHIK, A. - FINKELBERG, M., The coordinate ring of general curve of genus g 5 is Koszul, J. Algebra, 162, no. 2 (1993), 535-539. Zbl0819.14008MR1254790DOI10.1006/jabr.1993.1269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.