Solitary Waves and Electromagnetic Fields

Donato Fortunato

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 767-789
  • ISSN: 0392-4041

Abstract

top
Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet; by soliton, we mean a solitary wave which exhibits some form of stability. In this respect solitary waves and solitons have a particle-like behavior and they occur in many questions of mathematical physics, such as superconductivity, phase transition, classical and quantum field theory, non linear optics, (see e.g. [37], [50], [56]). We are not interested in the study of a particular model. Here we shall be concerned with the existence of solitary waves for a class of variational field equations which exhibit suitable symmetry properties, namely equations which are invariant for the Poincarè group and the gauge group. In particular we shall describe two results obtained jointly with V. Benci in [17], [18]. These results state the existence of three dimensional vortices for Abelian gauge theories describing the interaction of electrically charged solitary waves with the electromagnetic field.

How to cite

top

Fortunato, Donato. "Solitary Waves and Electromagnetic Fields." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 767-789. <http://eudml.org/doc/290470>.

@article{Fortunato2008,
abstract = {Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet; by soliton, we mean a solitary wave which exhibits some form of stability. In this respect solitary waves and solitons have a particle-like behavior and they occur in many questions of mathematical physics, such as superconductivity, phase transition, classical and quantum field theory, non linear optics, (see e.g. [37], [50], [56]). We are not interested in the study of a particular model. Here we shall be concerned with the existence of solitary waves for a class of variational field equations which exhibit suitable symmetry properties, namely equations which are invariant for the Poincarè group and the gauge group. In particular we shall describe two results obtained jointly with V. Benci in [17], [18]. These results state the existence of three dimensional vortices for Abelian gauge theories describing the interaction of electrically charged solitary waves with the electromagnetic field.},
author = {Fortunato, Donato},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {767-789},
publisher = {Unione Matematica Italiana},
title = {Solitary Waves and Electromagnetic Fields},
url = {http://eudml.org/doc/290470},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Fortunato, Donato
TI - Solitary Waves and Electromagnetic Fields
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 767
EP - 789
AB - Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet; by soliton, we mean a solitary wave which exhibits some form of stability. In this respect solitary waves and solitons have a particle-like behavior and they occur in many questions of mathematical physics, such as superconductivity, phase transition, classical and quantum field theory, non linear optics, (see e.g. [37], [50], [56]). We are not interested in the study of a particular model. Here we shall be concerned with the existence of solitary waves for a class of variational field equations which exhibit suitable symmetry properties, namely equations which are invariant for the Poincarè group and the gauge group. In particular we shall describe two results obtained jointly with V. Benci in [17], [18]. These results state the existence of three dimensional vortices for Abelian gauge theories describing the interaction of electrically charged solitary waves with the electromagnetic field.
LA - eng
UR - http://eudml.org/doc/290470
ER -

References

top
  1. ABRIKOSOV, A. A., On the magnetic properties of superconductors of the second group, Sov. Phys. JETP, 5 (1957), 1174-1182. 
  2. AMBROSETTI, A. - RUIZ, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., to appear. MR2417922DOI10.1142/S021919970800282X
  3. AZZOLLINI, A. - POMPONIO, A., Ground state solutions for the nonlinear Schrödinger- Maxwell equations, J. Math. Anal. Appl., to appear. Zbl1147.35091MR2422637DOI10.1016/j.jmaa.2008.03.057
  4. BADIALE, M. - BENCI, V., ROLANDO, S., Solitary waves: physical aspects and mathematical results, Rend. Sem. Math. Univ. Pol. Torino, 62 (2004), 107-154. Zbl1120.37045MR2131956
  5. BADIALE, M. - BENCI, V. - ROLANDO, S., Three dimensional vortices in the nonlinear wave equation, BUMI, to appear. Zbl1178.35263MR2493647
  6. BELLAZZINI, J. - BENCI, V. - BONANNO, C. - MICHELETTI, A.M., Solitons for the Nonlinear Klein-Gordon equation, arXiv:0712.1103 (2007). Zbl1200.35248MR2656691DOI10.1515/ans-2010-0211
  7. BELLAZZINI, J. - BENCI, V. - BONANNO, C. - SINIBALDI, E., Hylomorphic Solitons in the Nonlinear Klein-Gordon equation, preprint (2007). Zbl1194.35096MR2590428DOI10.4310/DPDE.2009.v6.n4.a2
  8. BELLAZZINI, J. - BONANNO, C. - SICILIANO, G., Magneto-static vortices in two dimensional Abelian Gauge Theories, Preprint (2008). Zbl1181.35227MR2551682DOI10.1007/s00009-009-0013-8
  9. BENCI, V. - FORTUNATO, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. MR1659454DOI10.12775/TMNA.1998.019
  10. BENCI, V. - FORTUNATO, D., The nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001), 6065-6072. Zbl1042.78500MR1970778DOI10.1016/S0362-546X(01)00688-5
  11. BENCI, V. - FORTUNATO, D., Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. Zbl1037.35075MR1901222DOI10.1142/S0129055X02001168
  12. BENCI, V. - FORTUNATO, D., Some remarks on the semilinear wave equation, Progress in Differential Equations and Their Applications, 54 (2003), 141-162Birkhäuser Verlag, Basel. Zbl1039.35065MR2023239
  13. BENCI, V. - FORTUNATO, D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences, V. BenciA. Masiello Eds Springer, Milano (2004), 1-50. Zbl06143112MR2085829
  14. BENCI, V. - FORTUNATO, D., Existence of 3D-Vortices in Abelian Gauge Theories, Med. J. Math., 3 (2006), 409-418. Zbl1167.35351MR2274734DOI10.1007/s00009-006-0087-5
  15. BENCI, V. - FORTUNATO, D., Solitary waves in the nonlinear wave equation and in Gauge theories, Journal of fixed point theory and Applications., 1, n. 1 (2007), 61-86. Zbl1122.35121MR2282344DOI10.1007/s11784-006-0008-z
  16. BENCI, V. - FORTUNATO, D., Solitary waves in Abelian Gauge theories, Adv. Nonlinear Stud., 3 (2008), 327-352. Zbl1157.58005MR2402825DOI10.1515/ans-2008-0206
  17. BENCI, V. - FORTUNATO, D., Three dimensional vortices in Abelian Gauge Theories, arXiv:0711.3351 (2007). Zbl1173.81013MR2514771DOI10.1016/j.na.2008.10.023
  18. BENCI, V. - FORTUNATO, D., Hylomorphic Vortices in Abelian Gauge Theories, in preparation. Zbl1173.81013
  19. BENCI, V. - VISCIGLIA, N., Solitary waves with non vanishing angular momentum, Adv. Nonlinear Stud., 3 (2003), 151-160. Zbl1030.35051MR1955598DOI10.1515/ans-2003-0104
  20. BERESTYCKI, H. - LIONS, P. L., Nonlinear Scalar Field Equations, I - Existence of a Ground State, Arch. Rat. Mech. Anal., 82 (4) (1983), 313-345. Zbl0533.35029MR695535DOI10.1007/BF00250555
  21. CANDELA, A. M. - SALVATORE, A., Multiple solitary waves for non-homogeneous Schrödinger-Maxwell equations, Mediterr. J. Math., 3 (2006), n. 3-4, 483-493. MR2274739DOI10.1007/s00009-006-0092-8
  22. CASSANI, D., Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733- 747. Zbl1057.35041MR2085333DOI10.1016/j.na.2003.05.001
  23. COCLITE, G. M., Metodi Variazionali applicati allo studio delle equazioni di Schrödinger-Maxwell, Thesis, University of Bari, 1999. 
  24. COCLITE, G. M., A multiplicity result for the Schrödinger-Maxwell equations. Ann. Pol. Math.79 MR1959755DOI10.4064/ap79-1-2
  25. COCLITE, G. M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Comm. Appl. Anal., 7 (2003). MR1986248
  26. COCLITE, G. M., GEORGIEV, V., Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations, 94 (2004), 1-31. MR2075433
  27. COLEMAN, S., 'Q-balls', Nuclear Phys. B262 (1985), 263-283. (erratum: B269 (1986), 744). MR819656DOI10.1016/0550-3213(85)90286-X
  28. D'APRILE, T. - MUGNAI, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger - Maxwell equations, Proc. of Royal Soc. of Edinburgh, section A Mathematics, 134 (2004), 893-906. Zbl1064.35182MR2099569DOI10.1017/S030821050000353X
  29. D'APRILE, T., MUGNAI, D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Advanced Nonlinear studies4 (2004), 307-322. Zbl1142.35406MR2079817DOI10.1515/ans-2004-0305
  30. D'APRILE, T., WEI, J., On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), n. 1, 321-342. MR2176935DOI10.1137/S0036141004442793
  31. D'APRILE, T. - WEI, J., Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. and Partial Differential Equations, 25 (2006), 105-137. MR2183857DOI10.1007/s00526-005-0342-9
  32. D'APRILE, T., Semiclassical states for the nonlinear Schrödinger equations with the electromagnetic field, Nonlinear Differential equations and Applications, 13 (2007), 655-681. MR2329023DOI10.1007/s00030-006-4037-5
  33. D'APRILE, T., Solitary charged waves interacting with the electrostatic field, J. Math. Anal. Appl., 317 (2006), 526-549. Zbl1091.35074MR2209577DOI10.1016/j.jmaa.2005.06.036
  34. D'AVENIA, P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Studies, 2 (2002) n. 2, 177-192. MR1896096
  35. D'AVENIA, P. - PISANI, L., Nonlinear Klein-Gordon equations coupled with Born-Infeld Equations, Electronics J. Differential Equations, 26 (2002), 1-13. MR1884995
  36. D'AVENIA, P. - PISANI, L., SICILIANO, G., Klein-Gordon-Maxwell system in a bounded domain, preprint. MR2552782DOI10.3934/dcds.2010.26.135
  37. DODD, R. K. - EILBECK, J. C. - GIBBON, J. D. - MORRIS, H. C., Solitons and nonlinear wave equations, Academic Press, New York, (1982). Zbl0496.35001MR696935
  38. DERRICK, C. H., Comments on Nonlinear Wave Equations as Model for Elementary Particles, Jour. Math. Phys., 5 (1964), 1252-1254. MR174304DOI10.1063/1.1704233
  39. FRIEMAN, J. A. - GELMINI, G. B. - GLEISER, M. - KOLB, E. W., Solitogenesis: Primordial origin of nontopological solitons, Phys. Rev. Lett., 60 (1988), 2101-2104. 
  40. GELFAND, I. M. - FOMIN, S. V., Calculus of Variations, Prentice-Hall, Englewood Cliffs, N.J. (1963). Zbl0127.05402MR160139
  41. GEORGIEV, V. - VISCIGLIA, N., Solitary waves for Klein-Gordon-Maxwell systems with external Coulomb potential, J. Math. Pures Appl., 84 (2005), 957-983. Zbl1078.35098MR2144648DOI10.1016/j.matpur.2004.09.016
  42. GRILLAKIS, M. - SHATAH, J. - STRAUSS, W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160-197. Zbl0656.35122MR901236DOI10.1016/0022-1236(87)90044-9
  43. KIM, C. - KIM, S. - KIM, Y., Global nontopological vortices, Phys. Review D, 47 (1985), 5434-5443. 
  44. KIKUCHI, H., On the existence of a solution for elliptic systems related to the Maxwell-Schrödinger equations, Nonlinear Anal., Theory Methods Appl., 67 (2007), 1445-1456. Zbl1119.35085MR2323292DOI10.1016/j.na.2006.07.029
  45. KLAINERMAN, S. - MACHEDON, M., On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. Journal, 74 (1994), 19-44. Zbl0818.35123MR1271462DOI10.1215/S0012-7094-94-07402-4
  46. KUSENKO, A. - SHAPOSHNIKOV, M., Supersymmetric Q-balls as dark matter, Phys. Lett., B418 (1998), 46-54. 
  47. IANNI, I. - VAIRA, G., On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Studies, to appear. Zbl1216.35138MR2426912DOI10.1515/ans-2008-0305
  48. LEE, T. D. - PANG, Y., Nontopological solitons, Phys. Rept., 221 (1992) 251-350. MR1192997DOI10.1016/0370-1573(92)90064-7
  49. LONG, E., Existence and stability of solitary waves in non-linear Klein-Gordon-Maxwell equations, Rev. Math. Phys., 18 (2006), 747-779. Zbl1169.78003MR2267114DOI10.1142/S0129055X06002784
  50. MANTON, N. - SUTCLIFFE, P., Topological Solitons, Cambridge University press, Cambridge (2004). MR2068924DOI10.1017/CBO9780511617034
  51. NIELSEN, H. - OLESEN, P., Vortex-line models for dual strings, Nucl. Phys. B61, (1973), 45-61. 
  52. NOETHER, E., Invariante Variationsprobleme, Nachr. kgl. Ges. Wiss. Göttingen math. phys. Kl. S. (1918), 235-257. 
  53. PISANI, L. - SICILIANO, G., Newmann condition in the Schrödinger-Maxwell system, Topol. Methods Nonlinear Anal.27 (2007), 251-264. MR2345062
  54. PISANI, L. - SICILIANO, G., A note on a Schrödinger-Poisson System in a bounded domain, Applied Math. Lett., 21 (2008), 521-528. Zbl1158.35424MR2402846DOI10.1016/j.aml.2007.06.005
  55. POHOZAEV, S. I., Eigenfunctions of the equation Δ u + λ f ( u ) , Soviet Math. Dokl., 165 (1965), 1408-1412. MR192184
  56. RAJARAMAN, R., Solitons and instantons, North Holland, Amsterdam, Oxford, New York, Tokio, 1988. MR719693
  57. ROSEN, G., Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities, J. Math. Phys., 9 (1968), 996-998. 
  58. ROSEN, G., Charged particle solutions to nonlinear complex scalar field theories with positive-definite energy densiries, J. Math. Phys., 9 (1968), 999. 
  59. RUBAKOV, V., Classical theory of Gauge fields, Princeton University press, Princeton2002. Zbl1036.81002MR2070823
  60. RUIZ, D., Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci., 15 (2005) n.1, 141-164. Zbl1074.81023MR2110455DOI10.1142/S0218202505003939
  61. RUIZ, D., The Schrödinger-Poisson equation under the effect of a nonlinear, local term, J. Func. Anal., 237 (2006), 655-674. Zbl1136.35037MR2230354DOI10.1016/j.jfa.2006.04.005
  62. RUIZ, D. - SICILIANO, G., A note on Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8, n. 1 (2008), 179-190. MR2378870DOI10.1515/ans-2008-0106
  63. SALVATORE, A., Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in 3 , Adv. Nonlinear Stud., 6 (2006), 157-169. MR2219833DOI10.1515/ans-2006-0203
  64. SHATAH, J., Stable Standing waves of Nonlinear Klein-Gordon Equations, Comm. Math. Phys., 91 (1983), 313-327. Zbl0539.35067MR723756
  65. SHATAH, J. - STRAUSS, W., Instability of nonlinear bound states, Comm. Math. Phys., 100 (1985), 173-190. Zbl0603.35007MR804458
  66. SICILIANO, G., Metodi variazionali applicati ad un sistema di equazioni di Schrödinger e Maxwell, Thesis, University of Bari (2004). 
  67. STRAUSS, W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. Zbl0356.35028MR454365
  68. STRAUSS, W. A., Nonlinear invariant waves equations, Lecture notes in Physics. v. 23, Springer (1978). MR498955
  69. VAIRA, G., Metodi variazionali nei sistemi Klein-Gordon-Maxwell e Schrödinger-Maxwell, Thesis, University of Bari (2006). 
  70. VILENKIN, A. - SHELLARD, E. P. S., Cosmic string and other topological defects, Cambridge University Press, Cambridge (1994). Zbl0978.83052MR1446491
  71. VOLKOV, M. S., Existence of spinning solitons in field theory, arXiv:hep-th/0401030 (2004). Zbl1117.83305
  72. VOLKOV, M. S. - WOHNERT, E., Spinning Q-balls, Phys. Rev. D, 66 (2002). 
  73. YANG, Y., Solitons in Field Theory and Nonlinear Analysis, Springer, New York, Berlin (2000). MR1838682DOI10.1007/978-1-4757-6548-9
  74. WITHAM, G. B., Linear and nonlinear waves, John Wiley and Sons, New York (1974). MR483954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.