Solitary Waves and Electromagnetic Fields
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 767-789
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFortunato, Donato. "Solitary Waves and Electromagnetic Fields." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 767-789. <http://eudml.org/doc/290470>.
@article{Fortunato2008,
abstract = {Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet; by soliton, we mean a solitary wave which exhibits some form of stability. In this respect solitary waves and solitons have a particle-like behavior and they occur in many questions of mathematical physics, such as superconductivity, phase transition, classical and quantum field theory, non linear optics, (see e.g. [37], [50], [56]). We are not interested in the study of a particular model. Here we shall be concerned with the existence of solitary waves for a class of variational field equations which exhibit suitable symmetry properties, namely equations which are invariant for the Poincarè group and the gauge group. In particular we shall describe two results obtained jointly with V. Benci in [17], [18]. These results state the existence of three dimensional vortices for Abelian gauge theories describing the interaction of electrically charged solitary waves with the electromagnetic field.},
author = {Fortunato, Donato},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {767-789},
publisher = {Unione Matematica Italiana},
title = {Solitary Waves and Electromagnetic Fields},
url = {http://eudml.org/doc/290470},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Fortunato, Donato
TI - Solitary Waves and Electromagnetic Fields
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 767
EP - 789
AB - Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet; by soliton, we mean a solitary wave which exhibits some form of stability. In this respect solitary waves and solitons have a particle-like behavior and they occur in many questions of mathematical physics, such as superconductivity, phase transition, classical and quantum field theory, non linear optics, (see e.g. [37], [50], [56]). We are not interested in the study of a particular model. Here we shall be concerned with the existence of solitary waves for a class of variational field equations which exhibit suitable symmetry properties, namely equations which are invariant for the Poincarè group and the gauge group. In particular we shall describe two results obtained jointly with V. Benci in [17], [18]. These results state the existence of three dimensional vortices for Abelian gauge theories describing the interaction of electrically charged solitary waves with the electromagnetic field.
LA - eng
UR - http://eudml.org/doc/290470
ER -
References
top- ABRIKOSOV, A. A., On the magnetic properties of superconductors of the second group, Sov. Phys. JETP, 5 (1957), 1174-1182.
- AMBROSETTI, A. - RUIZ, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., to appear. MR2417922DOI10.1142/S021919970800282X
- AZZOLLINI, A. - POMPONIO, A., Ground state solutions for the nonlinear Schrödinger- Maxwell equations, J. Math. Anal. Appl., to appear. Zbl1147.35091MR2422637DOI10.1016/j.jmaa.2008.03.057
- BADIALE, M. - BENCI, V., ROLANDO, S., Solitary waves: physical aspects and mathematical results, Rend. Sem. Math. Univ. Pol. Torino, 62 (2004), 107-154. Zbl1120.37045MR2131956
- BADIALE, M. - BENCI, V. - ROLANDO, S., Three dimensional vortices in the nonlinear wave equation, BUMI, to appear. Zbl1178.35263MR2493647
- BELLAZZINI, J. - BENCI, V. - BONANNO, C. - MICHELETTI, A.M., Solitons for the Nonlinear Klein-Gordon equation, arXiv:0712.1103 (2007). Zbl1200.35248MR2656691DOI10.1515/ans-2010-0211
- BELLAZZINI, J. - BENCI, V. - BONANNO, C. - SINIBALDI, E., Hylomorphic Solitons in the Nonlinear Klein-Gordon equation, preprint (2007). Zbl1194.35096MR2590428DOI10.4310/DPDE.2009.v6.n4.a2
- BELLAZZINI, J. - BONANNO, C. - SICILIANO, G., Magneto-static vortices in two dimensional Abelian Gauge Theories, Preprint (2008). Zbl1181.35227MR2551682DOI10.1007/s00009-009-0013-8
- BENCI, V. - FORTUNATO, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. MR1659454DOI10.12775/TMNA.1998.019
- BENCI, V. - FORTUNATO, D., The nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001), 6065-6072. Zbl1042.78500MR1970778DOI10.1016/S0362-546X(01)00688-5
- BENCI, V. - FORTUNATO, D., Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. Zbl1037.35075MR1901222DOI10.1142/S0129055X02001168
- BENCI, V. - FORTUNATO, D., Some remarks on the semilinear wave equation, Progress in Differential Equations and Their Applications, 54 (2003), 141-162Birkhäuser Verlag, Basel. Zbl1039.35065MR2023239
- BENCI, V. - FORTUNATO, D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences, V. BenciA. Masiello Eds Springer, Milano (2004), 1-50. Zbl06143112MR2085829
- BENCI, V. - FORTUNATO, D., Existence of 3D-Vortices in Abelian Gauge Theories, Med. J. Math., 3 (2006), 409-418. Zbl1167.35351MR2274734DOI10.1007/s00009-006-0087-5
- BENCI, V. - FORTUNATO, D., Solitary waves in the nonlinear wave equation and in Gauge theories, Journal of fixed point theory and Applications., 1, n. 1 (2007), 61-86. Zbl1122.35121MR2282344DOI10.1007/s11784-006-0008-z
- BENCI, V. - FORTUNATO, D., Solitary waves in Abelian Gauge theories, Adv. Nonlinear Stud., 3 (2008), 327-352. Zbl1157.58005MR2402825DOI10.1515/ans-2008-0206
- BENCI, V. - FORTUNATO, D., Three dimensional vortices in Abelian Gauge Theories, arXiv:0711.3351 (2007). Zbl1173.81013MR2514771DOI10.1016/j.na.2008.10.023
- BENCI, V. - FORTUNATO, D., Hylomorphic Vortices in Abelian Gauge Theories, in preparation. Zbl1173.81013
- BENCI, V. - VISCIGLIA, N., Solitary waves with non vanishing angular momentum, Adv. Nonlinear Stud., 3 (2003), 151-160. Zbl1030.35051MR1955598DOI10.1515/ans-2003-0104
- BERESTYCKI, H. - LIONS, P. L., Nonlinear Scalar Field Equations, I - Existence of a Ground State, Arch. Rat. Mech. Anal., 82 (4) (1983), 313-345. Zbl0533.35029MR695535DOI10.1007/BF00250555
- CANDELA, A. M. - SALVATORE, A., Multiple solitary waves for non-homogeneous Schrödinger-Maxwell equations, Mediterr. J. Math., 3 (2006), n. 3-4, 483-493. MR2274739DOI10.1007/s00009-006-0092-8
- CASSANI, D., Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733- 747. Zbl1057.35041MR2085333DOI10.1016/j.na.2003.05.001
- COCLITE, G. M., Metodi Variazionali applicati allo studio delle equazioni di Schrödinger-Maxwell, Thesis, University of Bari, 1999.
- COCLITE, G. M., A multiplicity result for the Schrödinger-Maxwell equations. Ann. Pol. Math.79 MR1959755DOI10.4064/ap79-1-2
- COCLITE, G. M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Comm. Appl. Anal., 7 (2003). MR1986248
- COCLITE, G. M., GEORGIEV, V., Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations, 94 (2004), 1-31. MR2075433
- COLEMAN, S., 'Q-balls', Nuclear Phys. B262 (1985), 263-283. (erratum: B269 (1986), 744). MR819656DOI10.1016/0550-3213(85)90286-X
- D'APRILE, T. - MUGNAI, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger - Maxwell equations, Proc. of Royal Soc. of Edinburgh, section A Mathematics, 134 (2004), 893-906. Zbl1064.35182MR2099569DOI10.1017/S030821050000353X
- D'APRILE, T., MUGNAI, D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Advanced Nonlinear studies4 (2004), 307-322. Zbl1142.35406MR2079817DOI10.1515/ans-2004-0305
- D'APRILE, T., WEI, J., On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), n. 1, 321-342. MR2176935DOI10.1137/S0036141004442793
- D'APRILE, T. - WEI, J., Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. and Partial Differential Equations, 25 (2006), 105-137. MR2183857DOI10.1007/s00526-005-0342-9
- D'APRILE, T., Semiclassical states for the nonlinear Schrödinger equations with the electromagnetic field, Nonlinear Differential equations and Applications, 13 (2007), 655-681. MR2329023DOI10.1007/s00030-006-4037-5
- D'APRILE, T., Solitary charged waves interacting with the electrostatic field, J. Math. Anal. Appl., 317 (2006), 526-549. Zbl1091.35074MR2209577DOI10.1016/j.jmaa.2005.06.036
- D'AVENIA, P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Studies, 2 (2002) n. 2, 177-192. MR1896096
- D'AVENIA, P. - PISANI, L., Nonlinear Klein-Gordon equations coupled with Born-Infeld Equations, Electronics J. Differential Equations, 26 (2002), 1-13. MR1884995
- D'AVENIA, P. - PISANI, L., SICILIANO, G., Klein-Gordon-Maxwell system in a bounded domain, preprint. MR2552782DOI10.3934/dcds.2010.26.135
- DODD, R. K. - EILBECK, J. C. - GIBBON, J. D. - MORRIS, H. C., Solitons and nonlinear wave equations, Academic Press, New York, (1982). Zbl0496.35001MR696935
- DERRICK, C. H., Comments on Nonlinear Wave Equations as Model for Elementary Particles, Jour. Math. Phys., 5 (1964), 1252-1254. MR174304DOI10.1063/1.1704233
- FRIEMAN, J. A. - GELMINI, G. B. - GLEISER, M. - KOLB, E. W., Solitogenesis: Primordial origin of nontopological solitons, Phys. Rev. Lett., 60 (1988), 2101-2104.
- GELFAND, I. M. - FOMIN, S. V., Calculus of Variations, Prentice-Hall, Englewood Cliffs, N.J. (1963). Zbl0127.05402MR160139
- GEORGIEV, V. - VISCIGLIA, N., Solitary waves for Klein-Gordon-Maxwell systems with external Coulomb potential, J. Math. Pures Appl., 84 (2005), 957-983. Zbl1078.35098MR2144648DOI10.1016/j.matpur.2004.09.016
- GRILLAKIS, M. - SHATAH, J. - STRAUSS, W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160-197. Zbl0656.35122MR901236DOI10.1016/0022-1236(87)90044-9
- KIM, C. - KIM, S. - KIM, Y., Global nontopological vortices, Phys. Review D, 47 (1985), 5434-5443.
- KIKUCHI, H., On the existence of a solution for elliptic systems related to the Maxwell-Schrödinger equations, Nonlinear Anal., Theory Methods Appl., 67 (2007), 1445-1456. Zbl1119.35085MR2323292DOI10.1016/j.na.2006.07.029
- KLAINERMAN, S. - MACHEDON, M., On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. Journal, 74 (1994), 19-44. Zbl0818.35123MR1271462DOI10.1215/S0012-7094-94-07402-4
- KUSENKO, A. - SHAPOSHNIKOV, M., Supersymmetric Q-balls as dark matter, Phys. Lett., B418 (1998), 46-54.
- IANNI, I. - VAIRA, G., On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Studies, to appear. Zbl1216.35138MR2426912DOI10.1515/ans-2008-0305
- LEE, T. D. - PANG, Y., Nontopological solitons, Phys. Rept., 221 (1992) 251-350. MR1192997DOI10.1016/0370-1573(92)90064-7
- LONG, E., Existence and stability of solitary waves in non-linear Klein-Gordon-Maxwell equations, Rev. Math. Phys., 18 (2006), 747-779. Zbl1169.78003MR2267114DOI10.1142/S0129055X06002784
- MANTON, N. - SUTCLIFFE, P., Topological Solitons, Cambridge University press, Cambridge (2004). MR2068924DOI10.1017/CBO9780511617034
- NIELSEN, H. - OLESEN, P., Vortex-line models for dual strings, Nucl. Phys. B61, (1973), 45-61.
- NOETHER, E., Invariante Variationsprobleme, Nachr. kgl. Ges. Wiss. Göttingen math. phys. Kl. S. (1918), 235-257.
- PISANI, L. - SICILIANO, G., Newmann condition in the Schrödinger-Maxwell system, Topol. Methods Nonlinear Anal.27 (2007), 251-264. MR2345062
- PISANI, L. - SICILIANO, G., A note on a Schrödinger-Poisson System in a bounded domain, Applied Math. Lett., 21 (2008), 521-528. Zbl1158.35424MR2402846DOI10.1016/j.aml.2007.06.005
- POHOZAEV, S. I., Eigenfunctions of the equation , Soviet Math. Dokl., 165 (1965), 1408-1412. MR192184
- RAJARAMAN, R., Solitons and instantons, North Holland, Amsterdam, Oxford, New York, Tokio, 1988. MR719693
- ROSEN, G., Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities, J. Math. Phys., 9 (1968), 996-998.
- ROSEN, G., Charged particle solutions to nonlinear complex scalar field theories with positive-definite energy densiries, J. Math. Phys., 9 (1968), 999.
- RUBAKOV, V., Classical theory of Gauge fields, Princeton University press, Princeton2002. Zbl1036.81002MR2070823
- RUIZ, D., Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci., 15 (2005) n.1, 141-164. Zbl1074.81023MR2110455DOI10.1142/S0218202505003939
- RUIZ, D., The Schrödinger-Poisson equation under the effect of a nonlinear, local term, J. Func. Anal., 237 (2006), 655-674. Zbl1136.35037MR2230354DOI10.1016/j.jfa.2006.04.005
- RUIZ, D. - SICILIANO, G., A note on Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8, n. 1 (2008), 179-190. MR2378870DOI10.1515/ans-2008-0106
- SALVATORE, A., Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in , Adv. Nonlinear Stud., 6 (2006), 157-169. MR2219833DOI10.1515/ans-2006-0203
- SHATAH, J., Stable Standing waves of Nonlinear Klein-Gordon Equations, Comm. Math. Phys., 91 (1983), 313-327. Zbl0539.35067MR723756
- SHATAH, J. - STRAUSS, W., Instability of nonlinear bound states, Comm. Math. Phys., 100 (1985), 173-190. Zbl0603.35007MR804458
- SICILIANO, G., Metodi variazionali applicati ad un sistema di equazioni di Schrödinger e Maxwell, Thesis, University of Bari (2004).
- STRAUSS, W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. Zbl0356.35028MR454365
- STRAUSS, W. A., Nonlinear invariant waves equations, Lecture notes in Physics. v. 23, Springer (1978). MR498955
- VAIRA, G., Metodi variazionali nei sistemi Klein-Gordon-Maxwell e Schrödinger-Maxwell, Thesis, University of Bari (2006).
- VILENKIN, A. - SHELLARD, E. P. S., Cosmic string and other topological defects, Cambridge University Press, Cambridge (1994). Zbl0978.83052MR1446491
- VOLKOV, M. S., Existence of spinning solitons in field theory, arXiv:hep-th/0401030 (2004). Zbl1117.83305
- VOLKOV, M. S. - WOHNERT, E., Spinning Q-balls, Phys. Rev. D, 66 (2002).
- YANG, Y., Solitons in Field Theory and Nonlinear Analysis, Springer, New York, Berlin (2000). MR1838682DOI10.1007/978-1-4757-6548-9
- WITHAM, G. B., Linear and nonlinear waves, John Wiley and Sons, New York (1974). MR483954
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.