Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 805-817
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBisi, Marzia. "Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 805-817. <http://eudml.org/doc/290471>.
@article{Bisi2008,
abstract = {In this paper we aim at describing the hydrodynamic limit of a mixture of chemically reacting gases. Starting from kinetic Boltzmann-type equations, we derive Grad's 13-moments equations for single species. Then, after scaling such equations in terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog procedure in order to build up hydrodynamic equations of Navier-Stokes type.},
author = {Bisi, Marzia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {805-817},
publisher = {Unione Matematica Italiana},
title = {Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures},
url = {http://eudml.org/doc/290471},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Bisi, Marzia
TI - Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 805
EP - 817
AB - In this paper we aim at describing the hydrodynamic limit of a mixture of chemically reacting gases. Starting from kinetic Boltzmann-type equations, we derive Grad's 13-moments equations for single species. Then, after scaling such equations in terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog procedure in order to build up hydrodynamic equations of Navier-Stokes type.
LA - eng
UR - http://eudml.org/doc/290471
ER -
References
top- BISI, M. - DESVILLETTES, L., From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys., 124 (2006), 881-912. Zbl1134.82323MR2264629DOI10.1007/s10955-005-8075-x
- BISI, M. - GROPPI, M. - SPIGA, G., Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. Zbl0996.76093MR1896837DOI10.1007/s001610100066
- BISI, M. - GROPPI, M. - SPIGA, G., Fluid-dynamic equations for reacting gas mixtures, Appl. Math., 50 (2005), 43-62. Zbl1099.82015MR2117695DOI10.1007/s10492-005-0003-5
- BISI, M. - GROPPI, M. - SPIGA, G., Kinetic Modelling of Bimolecular Chemical Reactions, in "Kinetic Methods for Nonconservative and Reacting Systems", (G. Toscani Ed.), "Quaderni di Matematica" [Mathematics Series], Aracne Editrice, Roma, 16 (2005), 1-143. Zbl1121.82032MR2244535
- BISI, M. - SPIGA, G., Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations, Commun. Math. Sci., 4 (2006), 779-798. Zbl1120.82011MR2264820
- CERCIGNANI, C., Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge (2000). Zbl0961.76002MR1744523
- CHAPMAN, S. - COWLING, T. G., The mathematical theory of non-uniform gases, Springer, New York (1994). Zbl0063.00782MR116537
- DE MASI, A. - FERRARI, P. A. - LEBOWITZ, J. L., Reaction-diffusion equations for interacting particle systems, J. Stat. Phys., 44 (1986), 589-644. Zbl0629.60107MR857069DOI10.1007/BF01011311
- DESVILLETTES, L. - MONACO, R. - SALVARANI, F., A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236. Zbl1060.76100MR2118066DOI10.1016/j.euromechflu.2004.07.004
- GIOVANGIGLI, V., Multicomponent Flow Modeling, Birkhäuser, Boston (1999). Zbl0956.76003MR1713516DOI10.1007/978-1-4612-1580-6
- GROPPI, M. - SPIGA, G., Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (2000), 197-219. Zbl1048.92502
- GROPPI, M. - SPIGA, G., Kinetic theory of a chemically reacting gas with inelastic transitions, Trans. Th. Stat. Phys., 30 (2001), 305-324. Zbl1174.82327
- KOLLER, W. - SCHÜRRER, F., Conservative solution methods for extended Boltzmann equations, Riv. Mat. Univ. Parma, (6) 4* (2001), 109-169. Zbl1005.82023MR1881106
- POLEWCZAK, J., A review of the kinetic modelings for non-reactive and reactive dense fluids, Riv. Mat. Univ. Parma, (6) 4* (2001), 23-55. Zbl1009.82018MR1881104
- PRIGOGINE, I. - XHROUET, E., On the perturbation of Maxwell distribution function by chemical reactions in a gas, Physica, 15 (1949), 913-932. Zbl0037.41003
- ROSSANI, A. - SPIGA, G., A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. MR1730976DOI10.1016/S0378-4371(99)00336-2
- SHIZGAL, B. - KARPLUS, M., Non-equilibrium contributions to the rate of reaction. Perturbation of the velocity distribution function, J. Chem. Phys., 52 (1970), 4262- 4278. MR273964DOI10.1063/1.1673637
- SPIGLER, R. - ZANETTE, D. H., Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, J. Appl. Math. Phys. (ZAMP), 44 (1993), 812-827. Zbl0784.76108MR1241634DOI10.1007/BF00942811
- ZANETTE, D. H., Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models, J. Phys. A: Math. Gen., 26 (1993), 5339-5349. Zbl0808.60073MR1248718
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.