Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths
Joel M. Cohen; Mauro Pagliacci; Massimo A. Picardello
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 619-628
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCohen, Joel M., Pagliacci, Mauro, and Picardello, Massimo A.. "Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 619-628. <http://eudml.org/doc/290473>.
@article{Cohen2008,
abstract = {We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by $\Delta + c \frac\{\partial\}\{\partial r\}$ for some constant $c$ that represents a drift towards (or away from) the origin.},
author = {Cohen, Joel M., Pagliacci, Mauro, Picardello, Massimo A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {619-628},
publisher = {Unione Matematica Italiana},
title = {Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths},
url = {http://eudml.org/doc/290473},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Cohen, Joel M.
AU - Pagliacci, Mauro
AU - Picardello, Massimo A.
TI - Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 619
EP - 628
AB - We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by $\Delta + c \frac{\partial}{\partial r}$ for some constant $c$ that represents a drift towards (or away from) the origin.
LA - eng
UR - http://eudml.org/doc/290473
ER -
References
top- BAJUNAID, I. - COHEN, J.M. - COLONNA, F. - SINGMAN, D., Function Series, Catalan Numbers and Random Walks on Trees, Amer. Math. Monthly, 112 (2005), 765-785. Zbl1168.60012MR2179858DOI10.2307/30037599
- COHEN, J.M., PAGLIACCI, M., Explicit Solution for the Wave Equation on Homogeneous trees, Adv. Appl. Math., 15 (1994), 390-403. Zbl0835.05068MR1304087DOI10.1006/aama.1994.1016
- FELLER, W., An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed., John Wiley and Sons, New York, 1968. Zbl0155.23101MR228020
- GERL, P. - WOESS, W., Local Limits and Harmonic Functions for Non-isotropic Random Walks on Free Groups, Prob. Theory and Related Fields, 71 (1986), 341- 355. Zbl0562.60011MR824708DOI10.1007/BF01000210
- LALLEY, S.P., Finite range Random Walks on Free Groups and Homogeneous Trees, Ann. Prob., 21 (1993), 2087-2130. Zbl0804.60006MR1245302
- PAGLIACCI, M., Heat and wave Equations on Homogeneous Trees, Boll. Un. Mat. It. (7) Sez. A, 7 (1993), 37-45. Zbl0798.05066MR1215097
- PAGLIACCI, M. - PICARDELLO, M.A., Heat Diffusion on Homogeneous Trees, Adv. Math.110 (1995), 175-190. Zbl0834.43010MR1317614DOI10.1006/aima.1995.1007
- PICARDELLO, M.A., Spherical Functions and Local Central Limit Theorems on Free Groups, Ann. Mat. Pura Appl., 133 (1983), 177-191. Zbl0527.60011MR725025DOI10.1007/BF01766017
- SAWYER, S., Isotropic Random Walks on a Tree, Z. Wahrsch. Verw. Gebiete, 42 (1978), 279-292. Zbl0362.60075MR491493DOI10.1007/BF00533464
- SAWYER, S. - STEGER, T., The Rate of Escape for Anisotropic Random Walks in a Tree, Prob. Theory and Related Fields, 76 (1987), 207-230. Zbl0608.60064MR906775DOI10.1007/BF00319984
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.