Recent Results on Random Polytopes
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 1, page 17-39
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSchneider, Rolf. "Recent Results on Random Polytopes." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 17-39. <http://eudml.org/doc/290475>.
@article{Schneider2008,
abstract = {This is a survey over recent asymptotic results on random polytopes in d-dimensional Euclidean space. Three ways of generating a random polytope are considered: convex hulls of finitely many random points, projections of a fixed high-dimensional polytope into a random d-dimensional subspace, intersections of random closed halfspaces. The type of problems for which asymptotic results are described is different in each case.},
author = {Schneider, Rolf},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {17-39},
publisher = {Unione Matematica Italiana},
title = {Recent Results on Random Polytopes},
url = {http://eudml.org/doc/290475},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Schneider, Rolf
TI - Recent Results on Random Polytopes
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 17
EP - 39
AB - This is a survey over recent asymptotic results on random polytopes in d-dimensional Euclidean space. Three ways of generating a random polytope are considered: convex hulls of finitely many random points, projections of a fixed high-dimensional polytope into a random d-dimensional subspace, intersections of random closed halfspaces. The type of problems for which asymptotic results are described is different in each case.
LA - eng
UR - http://eudml.org/doc/290475
ER -
References
top- AFFENTRANGER, F. - SCHNEIDER, R., Random projections of regular simplices, Discrete Comput. Geom., 7 (1992), 219-226. Zbl0751.52002MR1149653DOI10.1007/BF02187839
- AVRAM, F. - BERTSIMAS, D., On central limit theorems in geometrical probability, Ann. Appl. Probab., 3 (1993), 1033-1046. Zbl0784.60015MR1241033
- BÁRÁNY, I., Random polytopes in smooth convex bodies, Mathematika, 39 (1982), 81-92.
- BÁRÁNY, I., Random polytopes, convex bodies, and approximation, in A. J. Baddeley - I. Bárány - R. Schneider - W. Weil, Stochastic Geometry, C.I.M.E. Summer School, Martina Franca, Italy, 2004 (W. Weil, ed.), Lecture Notes in Mathematics1892, pp. 77-118, Springer, Berlin (2007). MR2327289
- BÁRÁNY, I. - LARMAN, D. G., Convex bodies, economic cap coverings, random polytopes, Mathematika, 35 (1988), 274-291. Zbl0674.52003MR986636DOI10.1112/S0025579300015266
- BÁRÁNY, I. - REITZNER, M., Random polytopes, (submitted). MR2654675
- BÁRÁNY, I. - VU, V., Central limit theorems for Gaussian polytopes, Ann. Probab., 35 (2007), 1593-1621. Zbl1124.60014MR2330981DOI10.1214/009117906000000791
- BARYSHNIKOV, Y. N. - VITALE, R. A., Regular simplices and Gaussian samples, Discrete Comput. Geom., 11 (1994), 141-147. Zbl0795.52002MR1254086DOI10.1007/BF02574000
- BÖRÖCZKY JR, K.. - HENK, M., Random projections of regular polytopes, Arch. Math., 73 (1999), 465-473. MR1725183DOI10.1007/s000130050424
- BUCHTA, C., An identity relating moments of functionals of convex hulls, Discrete Comput. Geom., 33 (2005), 125-142. Zbl1065.52003MR2105754DOI10.1007/s00454-004-1109-3
- CABO, A. J. - GROENEBOOM, P., Limit theorems for functionals of convex hulls, Probab. Theory Rel. Fields, 100 (1994), 31-55. Zbl0808.60019MR1292189DOI10.1007/BF01204952
- DONOHO, D. L., Neighborly polytopes and sparse solutions of underdetermined linear equations, Technical Report, Department of Statistics, Stanford University (2004).
- DONOHO, D. L., High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom., 35 (2006), 617-652. Zbl1095.52500MR2225676DOI10.1007/s00454-005-1220-0
- DONOHO, D. L. - TANNER, J., Sparse nonnegative solutions of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA, 102 (2005), no. 27, 9446-9451. Zbl1135.90368MR2168715DOI10.1073/pnas.0502269102
- DONOHO, D. L. - TANNER, J., Neighborliness of randomly projected simplices in high dimensions, Proc. Natl. Acad. Sci. USA, 102 (2005), no. 27, 9452-9457. Zbl1135.60300MR2168716DOI10.1073/pnas.0502258102
- DONOHO, D. L. - TANNER, J., Counting faces of randomly-projected polytopes when the projection radically lowers dimension, Technical Report No. 2006-11, Dept. of Statistics, Stanford University, J. Amer. Math. Soc. (to appear) Zbl1206.52010MR2449053DOI10.1090/S0894-0347-08-00600-0
- GOLDMAN, A., Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne, Ann. Probab., 26 (1998), 1727-1750. Zbl0936.60009MR1675067DOI10.1214/aop/1022855880
- GROENEBOOM, P., Convex hulls of uniform samples from a convex polygon, Preprint (2006). Zbl1251.60011MR2977398DOI10.1239/aap/1339878714
- HUG, D. - MUNSONIUS, G. O. - REITZNER, M., Asymptotic mean values of Gaussian polytopes, Beiträge Algebra Geom., 45 (2004), 531-548. Zbl1082.52003MR2093024
- HUG, D. - REITZNER, M., Gaussian polytopes: variances and limit theorems, Adv. Appl. Prob. (SGSA), 37 (2005), 297-320. Zbl1089.52003MR2144555DOI10.1239/aap/1118858627
- HUG, D. - REITZNER, M. - SCHNEIDER, R., The limit shape of the zero cell in a stationary Poisson hyperplane tessellation, Ann. Probab., 32 (2004), 1140-1167. Zbl1050.60010MR2044676DOI10.1214/aop/1079021474
- HUG, D. - REITZNER, M. - SCHNEIDER, R., Large Poisson-Voronoi cells and Crofton cells, Adv. Appl. Prob. (SGSA), 36 (2004), 667-690. Zbl1069.60010MR2079908DOI10.1239/aap/1093962228
- HUG, D. - SCHNEIDER, R., Large cells in Poisson-Delaunay tessellations, Discrete Comput. Geom., 31 (2004), 503-514. Zbl1074.60009MR2053496DOI10.1007/s00454-003-0818-3
- HUG, D. - SCHNEIDER, R., Large typical cells in Poisson-Delaunay mosaics, Rev. Roumaine Math. Pures Appl., 50 (2005), 657-670. Zbl1113.60016MR2204143
- HUG, D. - SCHNEIDER, R., Asymptotic shapes of large cells in random tessellations, Geom. Funct. Anal., 17 (2007), 156-191. Zbl1114.60012MR2306655DOI10.1007/s00039-007-0592-0
- HUG, D. - SCHNEIDER, R., Typical cells in Poisson hyperplane tessellations, Discrete Comput. Geom., 38 (2007), 305-319. Zbl1140.60009MR2343310DOI10.1007/s00454-007-1340-9
- KOVALENKO, I. N., A proof of a conjecture of David Kendall on the shape of random polygons of large area (Russian), Kibernet. Sistem. Anal.1997, 3-10, 187, Engl. transl.: Cybernet. Systems Anal., 33 (1997), 461-467. MR1609157DOI10.1007/BF02733102
- KOVALENKO, I. N., An extension of a conjecture of D.G. Kendall concerning shapes of random polygons to Poisson Voronoï cells, in Voronoï's Impact on Modern Science ( Engel, P. et al., eds.), Book I. Transl. from the Ukrainian, Kyiv: Institute of Mathematics. Proc. Inst. Math. Natl. Acad. Sci. Ukr., Math. Appl., 212 (1998), 266- 274.
- KOVALENKO, I. N., A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons, J. Appl. Math. Stochastic Anal., 12 (1999), 301-310. Zbl0959.60007MR1736071DOI10.1155/S1048953399000283
- LINIAL, N. - NOVIK, I., How neighborly can a centrally symmetric polytope be?, Discrete Comput. Geom., 36 (2006), 273-281. Zbl1127.52011MR2252105DOI10.1007/s00454-006-1235-1
- MECKE, J. - OSBURG, I., On the shape of large Crofton parallelotopes, Math. Notae, 41 (2003), 149-157. Zbl1202.60024MR2049441
- MILES, R. E., A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons, Adv. Appl. Prob. (SGSA), 27 (1995), 397-417. Zbl0829.60008MR1334821DOI10.2307/1427833
- REITZNER, M., Random polytopes and the Efron-Stein jackknife inequality, Ann. Probab., 31 (2003), 2136-2166. Zbl1058.60010MR2016615DOI10.1214/aop/1068646381
- REITZNER, M., Central limit theorems for random polytopes, Probab. Theory Relat. Fields, 133 (2005), 483-507. Zbl1081.60008MR2197111DOI10.1007/s00440-005-0441-8
- RÉNYI, A. - SULANKE, R., Über die konvexe Hulle von n zufällig gewählten Punkten, Z. Wahrscheinlichkeitsth. verw. Geb., 2 (1963), 75-84. Zbl0118.13701MR156262DOI10.1007/BF00535300
- RÉNYI, A. - SULANKE, R., Über die konvexe Hülle von n zufällig gewählten Punkten, II, Z. Wahrscheinlichkeitsth. verw. Geb., 3 (1964), 138-147. MR169139DOI10.1007/BF00535973
- RÉNYI, A. - SULANKE, R., Zufällige konvexe Polygone in einem Ringgebiet, Z. Wahrscheinlichkeitsth. verw. Geb., 9 (1968), 146-157. MR229272DOI10.1007/BF01851005
- RINOTT, Y., On normal approximation rates for certain sums of dependent random variables, J. Comput. Appl. Math., 55 (1994), 135-147. Zbl0821.60037MR1327369DOI10.1016/0377-0427(94)90016-7
- SCHNEIDER, R., Random approximation of convex sets, J. Microscopy, 151 (1988), 211-227. Zbl1256.52004
- SCHNEIDER, R., Convex Bodies - the Brunn-Minkowski Theory, Cambridge University Press, Cambridge (1993). Zbl0798.52001MR1216521DOI10.1017/CBO9780511526282
- SCHNEIDER, R., Discrete aspects of stochastic geometry, in Handbook of Discrete and Computational Geometry (J. E. Goodman - J. O'Rourke, eds.), 2nd ed., pp. 255-278, CRC Press, Boca Raton (2004). MR1730165
- SCHNEIDER, R. - WEIL, W., Stochastische Geometrie, Teubner, Stuttgart (2000). MR1794753DOI10.1007/978-3-322-80106-7
- SCHÜTT, C., Random polytopes and affine surface area, Math. Nachr., 170 (1994), 227-249. MR1302377DOI10.1002/mana.19941700117
- SCHÜTT, C. - WERNER, E., Polytopes with vertices chosen randomly from the boundary of a convex body, Israel Seminar 2001-2002 (V. D. Milman, G. Schechtman, eds.), pp. 241-422, Lecture Notes in Math., vol. 1807, Springer, New York (2003). MR2083401DOI10.1007/978-3-540-36428-3_19
- STOYAN, D. - KENDALL, W. S. - MECKE, J., Stochastic Geometry and Its Applications, 2nd ed., Wiley, Chichester (1995). Zbl0838.60002MR895588
- SYLVESTER, J.J., Question 1491, Educational Times, London, April (1864). MR1472424DOI10.1098/rsnr.1997.0021
- VERSHIK, A. M. - SPORYSHEV, P. V., An asymptotic estimate of the average number of steps of the parametric simplex method, U.S.S.R. Comput. Math. and Math. Phys., 26 (1986), 104-113. Zbl0621.90046MR850459
- VERSHIK, A. M. - SPORYSHEV, P. V., Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem, Selecta Math. Soviet., 11 (1992), 181-201. Zbl0791.52011MR1166627
- VU, V., Sharp concentration of random polytopes, Geom. Funct. Anal., 15 (2005), 1284-1318. Zbl1094.52002MR2221249DOI10.1007/s00039-005-0541-8
- VU, V., Central limit theorems for random polytopes in a smooth convex set, Adv. Math., 207 (2006), 221-243. Zbl1111.52010MR2264072DOI10.1016/j.aim.2005.11.011
- WEIL, W. - WIEACKER, J. A., Stochastic geometry, in Handbook of Convex Geometry (P. M. Gruber - J. M. Wills, eds.), vol. B, pp. 1391-1438, North-Holland, Amsterdam (1993). MR1243013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.