Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures

Luigi Ambrosio

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 1, page 223-240
  • ISSN: 0392-4041

Abstract

top
A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.

How to cite

top

Ambrosio, Luigi. "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 223-240. <http://eudml.org/doc/290477>.

@article{Ambrosio2008,
abstract = {A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.},
author = {Ambrosio, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {223-240},
publisher = {Unione Matematica Italiana},
title = {Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures},
url = {http://eudml.org/doc/290477},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Ambrosio, Luigi
TI - Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 223
EP - 240
AB - A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.
LA - eng
UR - http://eudml.org/doc/290477
ER -

References

top
  1. ALBEVERIO, S. - KUSUOKA, S., Maximality of infinite-dimensional Dirichlet forms and Hegh-Krohn's model of quantum fields. Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge (2002), 301-330. Zbl0798.46055MR1190532
  2. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). Zbl0957.49001MR1857292
  3. AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the spaces of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2005). Zbl1090.35002MR2129498
  4. AMBROSIO, L. - SAVARÉ, G., Gradient flows in spaces of probability measures. Handbook of Differential Equations. Evolutionary equations III, North Holland2007. MR2549368DOI10.1016/S1874-5717(07)80004-1
  5. AMBROSIO, L. - SAVARÉ, G. - ZAMBOTTI, L., Existence and Stability for Fokker-Planck equations with log-concave reference measure. (2007), Submitted paper. MR2529438DOI10.1007/s00440-008-0177-3
  6. BÉNILAN, P., Solutions intégrales d'équations d'évolution dans un espace de Banach. C.R.Acad.Sci. Paris Sér. A-B, 274, (1972). Zbl0246.47068MR300164
  7. BOGACHEV, V. I., Gaussian measures. Mathematical Surveys and Monographs, 62, AMS (1998). MR1642391DOI10.1090/surv/062
  8. BORELL, C., Convex set functions in d-space. Period. Math. Hungar., 6 (1975), 111-136. Zbl0307.28009MR404559DOI10.1007/BF02018814
  9. BRÉZIS, H., Opérateurs maximaux monotones. North-Holland, Amsterdam, (1973). 
  10. CARRILLO, J. A. - MCCANN, R. - VILLANI, C., Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal., 179 (2006), 217-263. Zbl1082.76105MR2209130DOI10.1007/s00205-005-0386-1
  11. CEPA, E., Problème de Skorohod multivoque, Annals of Probability, 26 no. 2 (1998), 500-532. Zbl0937.34046MR1626174DOI10.1214/aop/1022855642
  12. DEBUSSCHE, A. - ZAMBOTTI, L., Conservative Stochastic Cahn-Hilliard equation with reflection, to appear in Annals of Probability (2007). Zbl1130.60068MR2349572DOI10.1214/009117906000000773
  13. DAL MASO, G., An introduction to Γ -convergence. Birkhauser (1993). Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  14. DA PRATO, G. - ZABCZYK, J., Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Notes Series, 293, Cambridge University Press (2002). Zbl1012.35001MR1985790DOI10.1017/CBO9780511543210
  15. DA PRATO, G. - ZABCZYK, J., Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, n.229, Cambridge University Press (1996). Zbl0849.60052MR1417491DOI10.1017/CBO9780511662829
  16. DE GIORGI, E. - MARINO, A. and TOSQUES, M., Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 68 (1980), 180-187. Zbl0465.47041MR636814
  17. FANG, S., Wasserstein space over the Wiener space. Preprint, 2007. 
  18. FEYEL, D. - USTUNEL, A. S., Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space, Probab. Theory Relat. Fields, 128 (2004), 347-385. Zbl1055.60052MR2036490DOI10.1007/s00440-003-0307-x
  19. FUKUSHIMA, M. - OSHIMA, Y. - TAKEDA, M., Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin-New York (1994). Zbl0838.31001MR1303354DOI10.1515/9783110889741
  20. FUNAKI, T., Stochastic Interface Models. In: Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (ed. J. Picard), 103-274, Lect. Notes Math., 1869, Springer (2005). MR2228384DOI10.1007/11429579_2
  21. FUNAKI, T. - OLLA, S., Fluctuations for ϕ interface model on a wall. Stoch. Proc. and Appl, 94 (2001), 1-27. Zbl1055.60096MR1835843DOI10.1016/S0304-4149(00)00104-6
  22. FUNAKI, T. - SPOHN, H., Motion by mean curvature from the Ginzburg-Landau ϕ interface model. Comm. Math. Phys.185 (1997), 1-36. Zbl0884.58098MR1463032DOI10.1007/s002200050080
  23. GIACOMIN, G. - OLLA, S. - SPOHN, H., Equilibrium fluctuations for ϕ interface model, Ann. Probab.29 (2001), 1138-1172. Zbl1017.60100MR1872740DOI10.1214/aop/1015345600
  24. JOHN, F., Partial differential equations. Springer (4th. ed.) (1970). MR261133
  25. JORDAN, R. - KINDERLEHRER, D. - OTTO, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29 (1998), 1-17. Zbl0915.35120MR1617171DOI10.1137/S0036141096303359
  26. LYTCHAK, A., Open map theorem for metric spaces. St. Petersburg Math. J., 17 (2006), 477-491. Zbl1152.53033MR2167848DOI10.1090/S1061-0022-06-00916-2
  27. MA, Z. M. - ROCKNER, M., Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext, Springer-Verlag (1992). Zbl0826.31001MR1214375DOI10.1007/978-3-642-77739-4
  28. NUALART, D. - PARDOUX, E., White noise driven quasilinear SPDEs with reflection, Prob. Theory and Rel. Fields, 93 (1992), 77-89. Zbl0767.60055MR1172940DOI10.1007/BF01195389
  29. MCCANN, R. J., A convexity principle for interacting gases. Adv. Math., 128, (1997) 153-179. Zbl0901.49012MR1451422DOI10.1006/aima.1997.1634
  30. OTTO, F., The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE, 26 (2001), 101-174. Zbl0984.35089MR1842429DOI10.1081/PDE-100002243
  31. PERELMAN, G. and PETRUNIN, A., Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint (1994). MR2693118
  32. REVUZ, D. - YOR, M., Continuous Martingales and Brownian Motion, Springer Verlag (1991). Zbl0731.60002MR1083357DOI10.1007/978-3-662-21726-9
  33. SAVARÉ, G., Gradient flows and diffusion semigroups in metric spaces and lower curvature bounds. CRAS note (2007), in press. MR2344814DOI10.1016/j.crma.2007.06.018
  34. SHEFFIELD, S., Random Surfaces, Asterisque, No. 304 (2005). MR2251117
  35. SKOROHOD, A. V., Stochastic equations for diffusions in a bounded region, Theory Probab. Appl.6 (1961), 264-274. 
  36. SPOHN, H., Interface motion in models with stochastic dynamics, J. Stat. Phys.71 (1993), 1081-1132. Zbl0935.82546MR1226387DOI10.1007/BF01049962
  37. STROOCK, D. W. - VARADHAN, S. R. S., Multidimensional diffusion processes. Springer Verlag, second ed (1997). Zbl0426.60069MR532498
  38. TANAKA, H., Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J.9 (1979), 163-177. Zbl0423.60055MR529332
  39. VILLANI, C., Topics in optimal transportation. Graduate Studies in Mathematics, 58 (2003), AMS. Zbl1106.90001MR1964483DOI10.1007/b12016
  40. ZAMBOTTI, L., Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 no. 4 (2002), 579-600. Zbl1009.60047MR1921014DOI10.1007/s004400200203
  41. ZAMBOTTI, L., Integration by parts on δ -Bessel Bridges, δ > 3 , and related SPDEs, Annals of Probability, 31 no. 1 (2003), 323-348. Zbl1019.60062MR1959795DOI10.1214/aop/1046294313
  42. ZAMBOTTI, L., Fluctuations for a ϕ interface model with repulsion from a wall, Prob. Theory and Rel. Fields, 129 no. 3 (2004), 315-339. Zbl1073.60099MR2128236DOI10.1007/s00440-004-0335-1
  43. ZAMBOTTI, L., Convergence of approximations of monotone gradient systems, Journal of Evolution Equations, 6 no. 4 (2006), 601-619. Zbl1130.35140MR2267701DOI10.1007/s00028-006-0275-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.