A Uniqueness Result for Solutions to Subcritical NLS
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 791-803
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVega, Luis, and Visciglia, Nicola. "A Uniqueness Result for Solutions to Subcritical NLS." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 791-803. <http://eudml.org/doc/290479>.
@article{Vega2008,
abstract = {We extend in a nonlinear context previous results obtained in [8], [9], [10]. In particular we present a precised version of Morawetz type estimates and a uniqueness criterion for solutions to subcritical NLS.},
author = {Vega, Luis, Visciglia, Nicola},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {791-803},
publisher = {Unione Matematica Italiana},
title = {A Uniqueness Result for Solutions to Subcritical NLS},
url = {http://eudml.org/doc/290479},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Vega, Luis
AU - Visciglia, Nicola
TI - A Uniqueness Result for Solutions to Subcritical NLS
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 791
EP - 803
AB - We extend in a nonlinear context previous results obtained in [8], [9], [10]. In particular we present a precised version of Morawetz type estimates and a uniqueness criterion for solutions to subcritical NLS.
LA - eng
UR - http://eudml.org/doc/290479
ER -
References
top- BARCELO, J. A. - RUIZ, A. - VEGA, L., Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., vol. 236 (2006), 1-24. Zbl1293.35090MR2227127DOI10.1016/j.jfa.2006.03.012
- CAZENAVE, T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. MR2002047DOI10.1090/cln/010
- COSTANTIN, P. - SAUT, J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., vol. 1 (1988), 413-439. Zbl0667.35061MR928265DOI10.2307/1990923
- KEEL, M. - TAO, T., Endpoint Strichartz estimates, Amer. J. Math., vol. 120 (1998), 955-980. Zbl0922.35028MR1646048
- LIONS, P. L. - PERTHAME, B., Lemmes de moments, de moyenne et de dispersion, C.R.A.S., vol. 314 (1992), 801-806. Zbl0761.35085MR1166050
- SJOLIN, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., vol. 55 (1987), 699-715. Zbl0631.42010MR904948DOI10.1215/S0012-7094-87-05535-9
- VEGA, L., Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., vol. 102 (1988), 874-878. Zbl0654.42014MR934859DOI10.2307/2047326
- VEGA, L. - VISCIGLIA, N., On the local smoothing for the free Schrödinger equation. Proc. Amer. Math. Soc., vol. 135 (2007), 119-128. Zbl1173.35107MR2280200DOI10.1090/S0002-9939-06-08732-6
- VEGA, L. - VISCIGLIA, N., On the local smmothing for a class of conformally invariant Schrödinger equations. Indiana Univ. Math. J., vol. 56 (2007), 2265-2304. Zbl1171.35117MR2360610DOI10.1512/iumj.2007.56.3069
- VEGA, L. - VISCIGLIA, N., Asymptotic lower bounds for a class of Schroedinger equations. Comm. Math. Phys., vol. 279 (2008), 429-453. Zbl1155.35098MR2383594DOI10.1007/s00220-008-0432-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.