A Sufficient Condition for the -Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 695-707
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDelladio, Silvano. "A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 695-707. <http://eudml.org/doc/290480>.
@article{Delladio2008,
abstract = { We prove a result about the rectifiability of class $C^2$ of the set of regular values (in the sense of Clarke) of a Lipschitz map $\varphi \colon \mathbb\{R\}^n \rightarrow \mathbb\{R\}^N$ with $n < N$},
author = {Delladio, Silvano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {695-707},
publisher = {Unione Matematica Italiana},
title = {A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map},
url = {http://eudml.org/doc/290480},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Delladio, Silvano
TI - A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 695
EP - 707
AB - We prove a result about the rectifiability of class $C^2$ of the set of regular values (in the sense of Clarke) of a Lipschitz map $\varphi \colon \mathbb{R}^n \rightarrow \mathbb{R}^N$ with $n < N$
LA - eng
UR - http://eudml.org/doc/290480
ER -
References
top- ALBERTI, G., On the structure of singular sets of convex functions. Calc. Var., 2 (1994), 17-27. Zbl0790.26010MR1384392DOI10.1007/BF01234313
- ANZELLOTTI, G. - OSSANNA, E., Singular sets of surfaces with generalized curvatures. Manuscripta Math., 86 (1995), 417-433. Zbl0837.49020MR1324680DOI10.1007/BF02568003
- ANZELLOTTI, G. - SERAPIONI, R., -rectifiable sets. J. reine angew. Math., 453 (1994), 1-20. MR1285779
- BOJARSKI, B. - HAJLASZ, P. - STRZELECKI, P., Sard's theorem for mappings in Holder and Sobolev spaces. Manuscripta Math., 118, n. 3 (2005), 383-397. Zbl1098.46024MR2183045DOI10.1007/s00229-005-0590-1
- CLARKE, F.H. - LEDYAEV, YU.S. - STERN, R.J. - WOLENSKI, P.R., Nonsmooth analysis and control theory. Graduate Texts in Mathematics, Springer Verlag1998. Zbl1047.49500MR1488695
- DELLADIO, S., Taylor's polynomials and non-homogeneous blow-ups. Manuscripta Math., 113, n. 3 (2004), 383-396. Zbl1093.53078MR2129311DOI10.1007/s00229-004-0438-0
- DELLADIO, S., Non-homogeneous dilatations of a functions graph and Taylors formula: some results about convergence. Real Anal. Exchange, 29, n. 2 (2003/2004), 687-712. Zbl1071.28005MR2083806DOI10.14321/realanalexch.29.2.0687
- DELLADIO, S., A result about -rectifiability of one-dimensional rectifiable sets. Application to a class of one-dimensional integral currents. Boll. Un. Matem. Italiana, 10-B (2007), 237-252. Zbl1178.53003MR2310966
- DELLADIO, S., A sufficient condition for the -rectifiability of Lipschitz curves. To appear on J. Geom. Anal. [PDF available at the page http://eprints.biblio.unitn.it/ archive/00000934/]. Zbl1152.49325MR2420763DOI10.1007/s12220-008-9024-0
- EVANS, L.C. - GARIEPY, R.F., Lecture Notes on Measure Theory and Fine Properties of Functions. (Studies in Advanced Math.) CRC Press1992. MR1158660
- FEDERER, H., Geometric Measure Theory. Springer-Verlag1969. Zbl0176.00801MR257325
- FU, J.H.G., Some Remarks On Legendrian Rectifiable Currents. Manuscripta Math., 97, n. 2 (1998), 175-187. Zbl0916.53038MR1651402DOI10.1007/s002290050095
- FU, J.H.G. - Erratum to "Some Remarks On Legendrian Rectifiable Currents". Manuscripta Math., 113, n. 3 (2004), 397-401. Zbl1066.53014MR2129312DOI10.1007/s00229-004-0437-1
- MATTILA, P., Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995. Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
- SIMON, L., Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Canberra, Australia, vol. 3, 1984. MR756417
- STEIN, E.M., Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.