A Sufficient Condition for the C 2 -Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map

Silvano Delladio

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 695-707
  • ISSN: 0392-4041

Abstract

top
We prove a result about the rectifiability of class C 2 of the set of regular values (in the sense of Clarke) of a Lipschitz map φ : n N with n < N

How to cite

top

Delladio, Silvano. "A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 695-707. <http://eudml.org/doc/290480>.

@article{Delladio2008,
abstract = { We prove a result about the rectifiability of class $C^2$ of the set of regular values (in the sense of Clarke) of a Lipschitz map $\varphi \colon \mathbb\{R\}^n \rightarrow \mathbb\{R\}^N$ with $n < N$},
author = {Delladio, Silvano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {695-707},
publisher = {Unione Matematica Italiana},
title = {A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map},
url = {http://eudml.org/doc/290480},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Delladio, Silvano
TI - A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 695
EP - 707
AB - We prove a result about the rectifiability of class $C^2$ of the set of regular values (in the sense of Clarke) of a Lipschitz map $\varphi \colon \mathbb{R}^n \rightarrow \mathbb{R}^N$ with $n < N$
LA - eng
UR - http://eudml.org/doc/290480
ER -

References

top
  1. ALBERTI, G., On the structure of singular sets of convex functions. Calc. Var., 2 (1994), 17-27. Zbl0790.26010MR1384392DOI10.1007/BF01234313
  2. ANZELLOTTI, G. - OSSANNA, E., Singular sets of surfaces with generalized curvatures. Manuscripta Math., 86 (1995), 417-433. Zbl0837.49020MR1324680DOI10.1007/BF02568003
  3. ANZELLOTTI, G. - SERAPIONI, R., C k -rectifiable sets. J. reine angew. Math., 453 (1994), 1-20. MR1285779
  4. BOJARSKI, B. - HAJLASZ, P. - STRZELECKI, P., Sard's theorem for mappings in Holder and Sobolev spaces. Manuscripta Math., 118, n. 3 (2005), 383-397. Zbl1098.46024MR2183045DOI10.1007/s00229-005-0590-1
  5. CLARKE, F.H. - LEDYAEV, YU.S. - STERN, R.J. - WOLENSKI, P.R., Nonsmooth analysis and control theory. Graduate Texts in Mathematics, Springer Verlag1998. Zbl1047.49500MR1488695
  6. DELLADIO, S., Taylor's polynomials and non-homogeneous blow-ups. Manuscripta Math., 113, n. 3 (2004), 383-396. Zbl1093.53078MR2129311DOI10.1007/s00229-004-0438-0
  7. DELLADIO, S., Non-homogeneous dilatations of a functions graph and Taylors formula: some results about convergence. Real Anal. Exchange, 29, n. 2 (2003/2004), 687-712. Zbl1071.28005MR2083806DOI10.14321/realanalexch.29.2.0687
  8. DELLADIO, S., A result about C 2 -rectifiability of one-dimensional rectifiable sets. Application to a class of one-dimensional integral currents. Boll. Un. Matem. Italiana, 10-B (2007), 237-252. Zbl1178.53003MR2310966
  9. DELLADIO, S., A sufficient condition for the C H -rectifiability of Lipschitz curves. To appear on J. Geom. Anal. [PDF available at the page http://eprints.biblio.unitn.it/ archive/00000934/]. Zbl1152.49325MR2420763DOI10.1007/s12220-008-9024-0
  10. EVANS, L.C. - GARIEPY, R.F., Lecture Notes on Measure Theory and Fine Properties of Functions. (Studies in Advanced Math.) CRC Press1992. MR1158660
  11. FEDERER, H., Geometric Measure Theory. Springer-Verlag1969. Zbl0176.00801MR257325
  12. FU, J.H.G., Some Remarks On Legendrian Rectifiable Currents. Manuscripta Math., 97, n. 2 (1998), 175-187. Zbl0916.53038MR1651402DOI10.1007/s002290050095
  13. FU, J.H.G. - Erratum to "Some Remarks On Legendrian Rectifiable Currents". Manuscripta Math., 113, n. 3 (2004), 397-401. Zbl1066.53014MR2129312DOI10.1007/s00229-004-0437-1
  14. MATTILA, P., Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995. Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
  15. SIMON, L., Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Canberra, Australia, vol. 3, 1984. MR756417
  16. STEIN, E.M., Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.