A Survey on Systems of Nonlinear Schrödinger Equations

Antonio Ambrosetti

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 475-486
  • ISSN: 0392-4041

Abstract

top
We survey some recent results dealing with some classes of systems of nonlinear Schrödinger equations.

How to cite

top

Ambrosetti, Antonio. "A Survey on Systems of Nonlinear Schrödinger Equations." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 475-486. <http://eudml.org/doc/290487>.

@article{Ambrosetti2008,
abstract = {We survey some recent results dealing with some classes of systems of nonlinear Schrödinger equations.},
author = {Ambrosetti, Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {475-486},
publisher = {Unione Matematica Italiana},
title = {A Survey on Systems of Nonlinear Schrödinger Equations},
url = {http://eudml.org/doc/290487},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Ambrosetti, Antonio
TI - A Survey on Systems of Nonlinear Schrödinger Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 475
EP - 486
AB - We survey some recent results dealing with some classes of systems of nonlinear Schrödinger equations.
LA - eng
UR - http://eudml.org/doc/290487
ER -

References

top
  1. AKHMEDIEV, N. - ANKIEWICZ, A., Solitons, Nonlinear pulses and beams, Chapman and Hall, London, 1997. 
  2. AKHMEDIEV, N. - ANKIEWICZ, A., Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett., 70 (1993), 2395-2398. Zbl1063.35526MR1212560DOI10.1103/PhysRevLett.70.2395
  3. AMBROSETTI, A., A Note on nonlinear Schrödinger systems: existence of a-symmetric solutions, Adv. Nonlin. Studies, 6 (2006), 149-155. Zbl1113.34023MR2172811DOI10.1515/ans-2006-0202
  4. AMBROSETTI, A., Remarks on some systems of nonlinear Schrödinger equations, J. fixed point theory appl., DOI 10.1007/s11784-007-0035-4. MR2447960DOI10.1007/s11784-007-0035-4
  5. AMBROSETTI, A. - CERAMI, G. - RUIZ, D., Solitons of linearly coupled systems of semilinear non-autonomous equations on n , J. Funct. Anal., to appear. Zbl1148.35080MR2414222DOI10.1016/j.jfa.2007.11.013
  6. AMBROSETTI, A. - COLORADO, E., Standing waves of some coupled nonlinear Schrödinger equations, Jour. London Math. Soc., 75 (2007), 67-82. MR2302730DOI10.1112/jlms/jdl020
  7. AMBROSETTI, A. - COLORADO, E. - RUIZ, D., Multi-bump solitons to linearly coupled NLS systems, Calc. Var. PDE, 30 (2007), 85-112. Zbl1123.35015MR2333097DOI10.1007/s00526-006-0079-0
  8. AMBROSETTI, A. - MALCHIODI, A., Perturbation methods and semilinear elliptic problems on n , Progress in Math. Vol., 240, Birkhauser, 2005. MR2186962
  9. BENCI, V. - CERAMI, G., Positive Solutions of Some Nonlinear Elliptic Problems in Exterior Domains, Arch. Rat. Mech. Anal.99 (1987), 283-300. Zbl0635.35036MR898712DOI10.1007/BF00282048
  10. CAZENAVE, T. - LIONS, P. L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85, no. 4 (1982), 549-561. Zbl0513.35007MR677997
  11. CERAMI, G., Some nonlinear elliptic problems in unbounded domains, Milan J. Math., 74 (2006), 47-77. Zbl1121.35054MR2278729DOI10.1007/s00032-006-0059-z
  12. CERAMI, G. - PASSASEO, D., The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. PDE, 17 (3) (2003), 257-281. Zbl1290.35050MR1989833
  13. CIPOLLATTI, R. - ZUMPICCHIATTI, W., Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations, Nonlinear Anal. T.M.A., 42, no. 3 (2000), 445-461. MR1774273DOI10.1016/S0362-546X(98)00357-5
  14. DE FIGUEIREDO, D. G. - LOPES, O., Solitary waves for some nonlinear Schrödinger systems, Ann. I.H.P. - Anal. non Linéaire, 25, no. 3 (2008), 149-161. Zbl1135.35072MR2383083DOI10.1016/j.anihpc.2006.11.006
  15. MAIA, L. - MONTEFUSCO, E. - PELLACCI, B., Positive solutions of a weakly coupled nonlinear Schrödinger system, J. Diff. Equat., 229 (2006), 743-767. Zbl1104.35053MR2263573DOI10.1016/j.jde.2006.07.002
  16. MONTEFUSCO, E. - PELLACCCI, B. - SQUASSINA, M., Semiclassical states for weakly coupled nonlinear Schrödinger system, J. Eur. Math. Soc., 10 (2008), 47-71. MR2349896DOI10.4171/JEMS/103
  17. POMPONIO, A., Coupled nonlinear Schrödinger systems with potentials, J. Diff. Equations, 227 (2006), 258-281. Zbl1100.35098MR2233961DOI10.1016/j.jde.2005.09.002
  18. STUART, C., Uniqueness and stability of ground states for some nonlinear Schrödinger equations, J. Eur. Math. Soc. (JEMS) 8, no. 2 (2006), 399-414. MR2239285DOI10.4171/JEMS/60

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.