Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 873-879
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDe Lellis, Camillo. "Le equazioni di Eulero dal punto di vista delle inclusioni differenziali." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 873-879. <http://eudml.org/doc/290488>.
@article{DeLellis2008,
author = {De Lellis, Camillo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {873-879},
publisher = {Unione Matematica Italiana},
title = {Le equazioni di Eulero dal punto di vista delle inclusioni differenziali},
url = {http://eudml.org/doc/290488},
volume = {1},
year = {2008},
}
TY - JOUR
AU - De Lellis, Camillo
TI - Le equazioni di Eulero dal punto di vista delle inclusioni differenziali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 873
EP - 879
LA - ita
UR - http://eudml.org/doc/290488
ER -
References
top- BRESSAN, A. - FLORES, F., On total differential inclusions, Rend. Sem. Mat. Univ. Padova, 92 (1994), 9-16. Zbl0821.35158MR1320474
- CELLINA, A., On the differential inclusion , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1980), 1-2 (1981), 1-6. Zbl0922.34009MR641583
- CHORIN, A. J., Vorticity and turbulence, vol. 103 of Applied Mathematical Sciences, (Springer-Verlag, New York, 1994). MR1281384DOI10.1007/978-1-4419-8728-0
- DACOROGNA, B. - MARCELLINI, P., General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math., 178 (1997), 1-37. Zbl0901.49027MR1448710DOI10.1007/BF02392708
- DAFERMOS, C. M., Hyperbolic conservation laws in continuum physics, Vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 2000). Zbl0940.35002MR1763936DOI10.1007/3-540-29089-3_14
- DE LELLIS, C. - SZEKELYHIDI, L., The Euler equations as a differential inclusion, Preprint. To appear in Ann. of Math. (2007). MR2600877DOI10.4007/annals.2009.170.1417
- DE LELLIS, C. - SZEKELYHIDI, L., On admissibility criteria for weak solutions of the Euler equations, Preprint (2008). MR2564474DOI10.1007/s00205-008-0201-x
- DI PERNA, R. J., Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, 2 (1985), 383-420. Zbl0606.35052MR808729DOI10.2307/2000221
- DI PERNA, R. J. - MAJDA, A. J., Concentrations in regularizations for 2-D incom- pressible flow, Comm. Pure Appl. Math., 40, 3 (1987), 301-345. MR882068DOI10.1002/cpa.3160400304
- FRISCH, U., Turbulence, Cambridge University Press, Cambridge (1995), The legacy of A. N. Kolmogorov. MR1428905
- KIRCHHEIM, B., Deformations with finitely many gradients and stability of quasi-convex hulls, C. R. Acad. Sci. Paris Sér. I Math., 332, 3 (2001), 289-294. Zbl0989.49013MR1817378DOI10.1016/S0764-4442(00)01792-4
- KIRCHHEIM, B., Rigidity and Geometry of microstructures, Habilitation Thesis, University of Leipzig (2003). Zbl1140.74303
- KIRCHHEIM, B. - MÜLLER, S. - ŠVERÁK, V., Studying nonlinear PDE by geometry in matrix space, in Geometric analysis and Nonlinear partial differential equations, S. Hildebrandt and H. Karcher, Eds. (Springer-Verlag, 2003), 347-395. MR2008346
- MAJDA, A. J. - BERTOZZI, A. L., Vorticity and incompressible flow, Vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press (Cambridge, 2002). MR1867882
- MÜLLER, S. - ŠVERÁK, V., Convex integration for Lipschitz mappings and counter-examples to regularity, Ann. of Math. (2), 157 (2003), 715-742. MR1983780DOI10.4007/annals.2003.157.715
- SCHEFFER, V., An inviscid flow with compact support in space-time, J. Geom. Anal., 3, 4 (1993), 343-401. Zbl0836.76017MR1231007DOI10.1007/BF02921318
- SHNIRELMAN, A., On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50, 12 (1997), 1261-1286. Zbl0909.35109MR1476315DOI10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.3.CO;2-4
- SHNIRELMAN, A., Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210, 3 (2000), 541-603. Zbl1011.35107MR1777341DOI10.1007/s002200050791
- TAO, T., Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006), Local and global analysis. MR2233925DOI10.1090/cbms/106
- TARTAR, L., Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math., Pitman (Boston, Mass., 1979), 136-212. MR584398
- TARTAR, L., The compensated compactness method applied to systems of conservation laws. In Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel (Dordrecht, 1983), 263-285. MR725524
- TEMAM, R., Navier-Stokes equations, third ed., vol. 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co. (Amsterdam, 1984). Theory and numerical analysis, With an appendix by F. Thomasset. MR769654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.