L p Maximal Regularity for Second Order Cauchy Problems is Independent of p

Ralph Chill; Sachi Srivastava

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 1, page 147-157
  • ISSN: 0392-4041

Abstract

top
If the second order problem u ¨ + u ˙ + A u = f has L p maximal regularity for some p ( 1 , ) , then it has L p maximal regularity for every p ( 1 , ) .

How to cite

top

Chill, Ralph, and Srivastava, Sachi. "$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 147-157. <http://eudml.org/doc/290490>.

@article{Chill2008,
abstract = {If the second order problem $\ddot\{u\} + \dot\{u\} + Au = f$ has $L^p$ maximal regularity for some $p \in (1, \infty)$, then it has $L^\{p\}$ maximal regularity for every $p \in (1, \infty)$.},
author = {Chill, Ralph, Srivastava, Sachi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {147-157},
publisher = {Unione Matematica Italiana},
title = {$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$},
url = {http://eudml.org/doc/290490},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Chill, Ralph
AU - Srivastava, Sachi
TI - $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 147
EP - 157
AB - If the second order problem $\ddot{u} + \dot{u} + Au = f$ has $L^p$ maximal regularity for some $p \in (1, \infty)$, then it has $L^{p}$ maximal regularity for every $p \in (1, \infty)$.
LA - eng
UR - http://eudml.org/doc/290490
ER -

References

top
  1. ACQUISTAPACE, P. - TERRENI, B., A unified approach to abstract linear non-autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. Zbl0646.34006MR934508
  2. ARENDT, W. - BATTY, C. J. K. - HIEBER, M. - NEUBRANDER, F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser, Basel, 2001. Zbl0978.34001MR1886588DOI10.1007/978-3-0348-5075-9
  3. BENEDEK, A. - CALDERÓN, A. P. - PANZONE, R., Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. USA, 48 (1962), 356-365. Zbl0103.33402MR133653
  4. CANNARSA, P. - VESPRI, V., On maximal L p regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B, 5 (1986), 165-175. Zbl0608.35027MR841623
  5. CHILL, R. - SRIVASTAVA, S., L p -maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781. Zbl1101.34043MR2190142DOI10.1007/s00209-005-0815-8
  6. DA PRATO, G. - GRISVARD, P., Sommes d'opérateurs linéaires et èquations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387. Zbl0315.47009MR442749
  7. DAUTRAY, R. - LIONS, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. VIII, INSTN: Collection Enseignement, Masson, Paris, 1987. MR918560
  8. DE SIMON, L., Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 547-558. Zbl0196.44803MR176192
  9. DORE, G. - VENNI, A., On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. Zbl0615.47002MR910825DOI10.1007/BF01163654
  10. HIEBER, M., Operator valued Fourier multipliers, Topics in nonlinear analysis. The Herbert Amann anniversary volume (J. Escher, G. Simonett, eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 35, Birkhauser Verlag, Basel, 1999, pp. 363-380. Zbl0919.47021MR1725578
  11. LABBAS, R. - TERRENI, B., Somme d'opérateurs linéaires de type parabolique. I, Boll. Un. Mat. Ital. B (7) 1 (1987), 545-569. Zbl0627.47005MR896340
  12. SOBOLEVSKII, P. E., Coerciveness inequalities for abstract parabolic equations, Dokl. Akad. Nauk SSSR, 157 (1964), 52-55. MR166487
  13. ZEIDLER, E., Nonlinear Functional Analysis and Its Applications. I, Springer Verlag, New York, Berlin, Heidelberg, 1990. Zbl0684.47029MR1033497DOI10.1007/978-1-4612-0985-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.