Some Nonlinear Evolution Problems in Mixed Form
Ulisse Stefanelli; Augusto Visintin
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 2, page 303-320
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topStefanelli, Ulisse, and Visintin, Augusto. "Some Nonlinear Evolution Problems in Mixed Form." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 303-320. <http://eudml.org/doc/290552>.
@article{Stefanelli2009,
abstract = {This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.},
author = {Stefanelli, Ulisse, Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {303-320},
publisher = {Unione Matematica Italiana},
title = {Some Nonlinear Evolution Problems in Mixed Form},
url = {http://eudml.org/doc/290552},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Stefanelli, Ulisse
AU - Visintin, Augusto
TI - Some Nonlinear Evolution Problems in Mixed Form
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 303
EP - 320
AB - This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.
LA - eng
UR - http://eudml.org/doc/290552
ER -
References
top- ALT, H. W. - LUCKHAUS, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3 (1983), 311-341. Zbl0497.35049MR706391DOI10.1007/BF01176474
- ARNOLD, D. N., Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 3 (1981), 405-421. Zbl0446.73066MR627113DOI10.1007/BF01400318
- ARROW, K. J. - HURWICZ, L., Gradient methods for concave programming: local results. In: Studies in linear and non-linear programming (K. J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford (1958), 117-126. MR108399
- I BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1972/73), 179-192. MR359352DOI10.1007/BF01436561
- BARBU, V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976. Zbl0328.47035MR390843
- BREZZI, F. - FORTIN, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics (Springer-Verlag, New York, 1991). Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
- BOFFI, D. - GASTALDI, L., Analysis of finite element approximation of evolution problems in mixed form, SIAM J. Numer. Anal., 42, 4 (2004), 1502-1526 (electronic). Zbl1080.65089MR2114288DOI10.1137/S0036142903431821
- BARANGER, J. - NAJIB, K., Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math., 58, 1 (1990), 35-49. Zbl0702.76007MR1069652DOI10.1007/BF01385609
- BREZIS, H., Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations. In Contrib. to nonlin. functional analysis. Proc. Sympos. Univ. Wisconsin, Madison (Academic Press, New York, 1971), 101-156. MR394323
- BREZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Number 5 in North Holland Math. Studies. North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- BREZZI, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. FrancËaise Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (R-2) (1974), 129-151. Zbl0338.90047MR365287
- CASCÓN, J. M. - FERRAGUT, L. - ASENSIO, M. I., Space-time adaptive algorithm for the mixed parabolic problem, Numer. Math., 103, 3 (2006), 367-392. Zbl1118.65098MR2221054DOI10.1007/s00211-006-0677-y
- CIARLET JR, P.. - HUANG, J. - ZOU, J., Some observations on generalized saddle-point problems, SIAM J. Matrix Anal. Appl., 25, 1 (2003), 224-236 (electronic). Zbl1130.35300MR2002909DOI10.1137/S0895479802410827
- COLLI, P. - VISINTIN, A., On a class of doubly nonlinear evolution problems, Comm. Partial Differential Equations, 15, 5 (1990), 737-756. Zbl0707.34053MR1070845DOI10.1080/03605309908820706
- CHRISTIANSEN, S. H. - WINTHER, R., On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput., 28, 1 (2006), 75-101 (electronic). Zbl1115.70003MR2219288DOI10.1137/040616887
- DIBENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12, 5 (1981), 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
- GATICA, G. N., Solvability and Galerkin approximations of a class of non-linear operator equations, Z. Anal. Anwendungen, 21, 3 (2002), 761-781. Zbl1024.65044MR1929431DOI10.4171/ZAA/1107
- GLOWINSKI, R. - MARROCCO, A., Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle-RAIRO Analyse Numérique, 9 (R-2) (1975), 41-76. Zbl0368.65053MR388811
- HEYWOOD, J. G. - RANNACHER, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (2) (1982), 275-311. Zbl0487.76035MR650052DOI10.1137/0719018
- JOHNSON, C. - THOMÉE, V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15 (1) (1981), 41-78. MR610597
- KORSAWE, J. - STARKE, G. - WANG, W. - KOLDITZ, O., Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches, Comput. Methods Appl. Mech. Engrg., 195 (9-12) (2006), 1096-1115. MR2195297DOI10.1016/j.cma.2005.04.011
- LE TALLEC, P., Existence and approximation results for nonlinear mixed problems: application to incompressible finite elasticity, Numer. Math., 38 (3) (1981/82), 365-382. Zbl0487.76008MR654103DOI10.1007/BF01396438
- MANOUZI, H. - FARHLOUL, M., Mixed finite element analysis of a non-linear three-fields Stokes model, IMA J. Numer. Anal., 21 (1) (2001), 143-164. Zbl0971.76049MR1812270DOI10.1093/imanum/21.1.143
- PANI, A. K., An -Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (2) (1998), 712-727 (electronic). Zbl0915.65107MR1618886DOI10.1137/S0036142995280808
- QUARTERONI, A., Mixed approximations of evolution problems, Comput. Methods Appl. Mech. Engrg., 24 (2) (1980), 137-163. Zbl0457.73049MR597041DOI10.1016/0045-7825(80)90043-2
- RUDIN, W., Functional analysis, International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991. MR1157815
- SCHEURER, B., Existence et approximation de points selles pour certains problèmes non linéaires, RAIRO Anal. Numér., 11 (4) (1977), 369-400, iv. Zbl0371.65025MR464014DOI10.1051/m2an/1977110403691
- SHOWALTER, R. E., Monotone operators in Banach space and nonlinear partial differential equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. Zbl0870.35004MR1422252
- SHOWALTER, R. E. - STEFANELLI, U., Diffusion in poro-plastic media, Math. Methods Appl. Sci., 27 (18) (2004), 2131-2151. Zbl1095.74011MR2102316DOI10.1002/mma.541
- TEMAM, R., Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. Zbl0383.35057MR603444
- THOMÉE, V., Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006. MR2249024
- UZAWA, H., Gradient methods for concave programming: global stability in the strictly concave case. In: Studies in linear and non-linear programming (K.J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford1958, 127-132. MR108399
- YOSIDA, K., Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, sixth edition, 1980. MR617913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.