Some Nonlinear Evolution Problems in Mixed Form

Ulisse Stefanelli; Augusto Visintin

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 2, page 303-320
  • ISSN: 0392-4041

Abstract

top
This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.

How to cite

top

Stefanelli, Ulisse, and Visintin, Augusto. "Some Nonlinear Evolution Problems in Mixed Form." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 303-320. <http://eudml.org/doc/290552>.

@article{Stefanelli2009,
abstract = {This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.},
author = {Stefanelli, Ulisse, Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {303-320},
publisher = {Unione Matematica Italiana},
title = {Some Nonlinear Evolution Problems in Mixed Form},
url = {http://eudml.org/doc/290552},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Stefanelli, Ulisse
AU - Visintin, Augusto
TI - Some Nonlinear Evolution Problems in Mixed Form
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 303
EP - 320
AB - This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.
LA - eng
UR - http://eudml.org/doc/290552
ER -

References

top
  1. ALT, H. W. - LUCKHAUS, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3 (1983), 311-341. Zbl0497.35049MR706391DOI10.1007/BF01176474
  2. ARNOLD, D. N., Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 3 (1981), 405-421. Zbl0446.73066MR627113DOI10.1007/BF01400318
  3. ARROW, K. J. - HURWICZ, L., Gradient methods for concave programming: local results. In: Studies in linear and non-linear programming (K. J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford (1958), 117-126. MR108399
  4. I BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1972/73), 179-192. MR359352DOI10.1007/BF01436561
  5. BARBU, V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976. Zbl0328.47035MR390843
  6. BREZZI, F. - FORTIN, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics (Springer-Verlag, New York, 1991). Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  7. BOFFI, D. - GASTALDI, L., Analysis of finite element approximation of evolution problems in mixed form, SIAM J. Numer. Anal., 42, 4 (2004), 1502-1526 (electronic). Zbl1080.65089MR2114288DOI10.1137/S0036142903431821
  8. BARANGER, J. - NAJIB, K., Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math., 58, 1 (1990), 35-49. Zbl0702.76007MR1069652DOI10.1007/BF01385609
  9. BREZIS, H., Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations. In Contrib. to nonlin. functional analysis. Proc. Sympos. Univ. Wisconsin, Madison (Academic Press, New York, 1971), 101-156. MR394323
  10. BREZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Number 5 in North Holland Math. Studies. North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  11. BREZZI, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. FrancËaise Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (R-2) (1974), 129-151. Zbl0338.90047MR365287
  12. CASCÓN, J. M. - FERRAGUT, L. - ASENSIO, M. I., Space-time adaptive algorithm for the mixed parabolic problem, Numer. Math., 103, 3 (2006), 367-392. Zbl1118.65098MR2221054DOI10.1007/s00211-006-0677-y
  13. CIARLET JR, P.. - HUANG, J. - ZOU, J., Some observations on generalized saddle-point problems, SIAM J. Matrix Anal. Appl., 25, 1 (2003), 224-236 (electronic). Zbl1130.35300MR2002909DOI10.1137/S0895479802410827
  14. COLLI, P. - VISINTIN, A., On a class of doubly nonlinear evolution problems, Comm. Partial Differential Equations, 15, 5 (1990), 737-756. Zbl0707.34053MR1070845DOI10.1080/03605309908820706
  15. CHRISTIANSEN, S. H. - WINTHER, R., On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput., 28, 1 (2006), 75-101 (electronic). Zbl1115.70003MR2219288DOI10.1137/040616887
  16. DIBENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12, 5 (1981), 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
  17. GATICA, G. N., Solvability and Galerkin approximations of a class of non-linear operator equations, Z. Anal. Anwendungen, 21, 3 (2002), 761-781. Zbl1024.65044MR1929431DOI10.4171/ZAA/1107
  18. GLOWINSKI, R. - MARROCCO, A., Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle-RAIRO Analyse Numérique, 9 (R-2) (1975), 41-76. Zbl0368.65053MR388811
  19. HEYWOOD, J. G. - RANNACHER, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (2) (1982), 275-311. Zbl0487.76035MR650052DOI10.1137/0719018
  20. JOHNSON, C. - THOMÉE, V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15 (1) (1981), 41-78. MR610597
  21. KORSAWE, J. - STARKE, G. - WANG, W. - KOLDITZ, O., Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches, Comput. Methods Appl. Mech. Engrg., 195 (9-12) (2006), 1096-1115. MR2195297DOI10.1016/j.cma.2005.04.011
  22. LE TALLEC, P., Existence and approximation results for nonlinear mixed problems: application to incompressible finite elasticity, Numer. Math., 38 (3) (1981/82), 365-382. Zbl0487.76008MR654103DOI10.1007/BF01396438
  23. MANOUZI, H. - FARHLOUL, M., Mixed finite element analysis of a non-linear three-fields Stokes model, IMA J. Numer. Anal., 21 (1) (2001), 143-164. Zbl0971.76049MR1812270DOI10.1093/imanum/21.1.143
  24. PANI, A. K., An H 1 -Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (2) (1998), 712-727 (electronic). Zbl0915.65107MR1618886DOI10.1137/S0036142995280808
  25. QUARTERONI, A., Mixed approximations of evolution problems, Comput. Methods Appl. Mech. Engrg., 24 (2) (1980), 137-163. Zbl0457.73049MR597041DOI10.1016/0045-7825(80)90043-2
  26. RUDIN, W., Functional analysis, International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991. MR1157815
  27. SCHEURER, B., Existence et approximation de points selles pour certains problèmes non linéaires, RAIRO Anal. Numér., 11 (4) (1977), 369-400, iv. Zbl0371.65025MR464014DOI10.1051/m2an/1977110403691
  28. SHOWALTER, R. E., Monotone operators in Banach space and nonlinear partial differential equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. Zbl0870.35004MR1422252
  29. SHOWALTER, R. E. - STEFANELLI, U., Diffusion in poro-plastic media, Math. Methods Appl. Sci., 27 (18) (2004), 2131-2151. Zbl1095.74011MR2102316DOI10.1002/mma.541
  30. TEMAM, R., Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. Zbl0383.35057MR603444
  31. THOMÉE, V., Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006. MR2249024
  32. UZAWA, H., Gradient methods for concave programming: global stability in the strictly concave case. In: Studies in linear and non-linear programming (K.J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford1958, 127-132. MR108399
  33. YOSIDA, K., Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, sixth edition, 1980. MR617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.