# Asymptotic properties of solutions of functional differential systems

Anatolij F. Ivanov; Pavol Marušiak

Mathematica Bohemica (1992)

- Volume: 117, Issue: 2, page 207-216
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topIvanov, Anatolij F., and Marušiak, Pavol. "Asymptotic properties of solutions of functional differential systems." Mathematica Bohemica 117.2 (1992): 207-216. <http://eudml.org/doc/29056>.

@article{Ivanov1992,

abstract = {In the paper we study the existence of nonoscillatory solutions of the system $x^\{(n)\}_i(t)=\sum ^2_\{j=1\}p_\{ij\}(t)f_\{ij\}(x_j(h_\{ij\}(t))), n\ge 2, i=1,2$, with the property $lim_\{t\rightarrow \infty \}x_i(t)/t^\{k_i\}=const \ne 0$ for some $k_i\in \lbrace 1,2,\ldots ,n-1\rbrace , i=1,2$. Sufficient conditions for the oscillation of solutions of the system are also proved.},

author = {Ivanov, Anatolij F., Marušiak, Pavol},

journal = {Mathematica Bohemica},

keywords = {functional differential system; Schauder-Tichonov fixed point theorem; oscillatory and nonoscillatory solutions; prescribed asymptotics; oscillatory solutions; nonoscillatory solutions; functional differential system; Schauder-Tichonov fixed point theorem; oscillatory and nonoscillatory solutions; prescribed asymptotics},

language = {eng},

number = {2},

pages = {207-216},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Asymptotic properties of solutions of functional differential systems},

url = {http://eudml.org/doc/29056},

volume = {117},

year = {1992},

}

TY - JOUR

AU - Ivanov, Anatolij F.

AU - Marušiak, Pavol

TI - Asymptotic properties of solutions of functional differential systems

JO - Mathematica Bohemica

PY - 1992

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 117

IS - 2

SP - 207

EP - 216

AB - In the paper we study the existence of nonoscillatory solutions of the system $x^{(n)}_i(t)=\sum ^2_{j=1}p_{ij}(t)f_{ij}(x_j(h_{ij}(t))), n\ge 2, i=1,2$, with the property $lim_{t\rightarrow \infty }x_i(t)/t^{k_i}=const \ne 0$ for some $k_i\in \lbrace 1,2,\ldots ,n-1\rbrace , i=1,2$. Sufficient conditions for the oscillation of solutions of the system are also proved.

LA - eng

KW - functional differential system; Schauder-Tichonov fixed point theorem; oscillatory and nonoscillatory solutions; prescribed asymptotics; oscillatory solutions; nonoscillatory solutions; functional differential system; Schauder-Tichonov fixed point theorem; oscillatory and nonoscillatory solutions; prescribed asymptotics

UR - http://eudml.org/doc/29056

ER -

## References

top- J. Jaroš T. Ҝusano, 10.32917/hmj/1206129616, Hirosh. Math. Ј. 18 (1988), 509-531. (1988) MR0991245DOI10.32917/hmj/1206129616
- I. T. Ҝiguradze, [unknown], Mat. Sb. 65 (1964), 172-187. (In Russian.) (1964)
- Y. Ҝitamura, 10.32917/hmj/1206135559, Hirosh. Math. Ј. 8(1978), 49-62. (1978) MR0466865DOI10.32917/hmj/1206135559
- P. Marušiak, Oscillation of solutions of nonlinear delay diffeгential equations, Mat. Čas. 4 (1974), 371-380. (1974) MR0399620
- M. Švec, Suг un probléme aux limites, Czech. Mat. 5. 19 (1969), 17-26. (1969) MR0237868

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.