Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations

Giovanni Vidossich

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 3, page 731-754
  • ISSN: 0392-4041

How to cite

top

Vidossich, Giovanni. "Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations." Bollettino dell'Unione Matematica Italiana 2.3 (2009): 731-754. <http://eudml.org/doc/290577>.

@article{Vidossich2009,
author = {Vidossich, Giovanni},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {731-754},
publisher = {Unione Matematica Italiana},
title = {Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations},
url = {http://eudml.org/doc/290577},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Vidossich, Giovanni
TI - Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/10//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 731
EP - 754
LA - eng
UR - http://eudml.org/doc/290577
ER -

References

top
  1. BECKER, R. I., Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981), 33-48. Zbl0465.34014MR626739DOI10.1016/0022-247X(81)90223-7
  2. CASTRO, A. - LAZER, A. C., Results on periodic solutions of parabolic equations suggested by elliptic theory, Boll. U.M.I., 1-B (1982), 1089-1104. Zbl0501.35005MR683495
  3. CAZENAVE, T. - HARAUX, A., An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. Zbl0926.35049MR1691574
  4. HIRSCH, M. W. - PUGH, C. C., Stable manifolds for hyperbolic sets, In: "Proc. Symp. Pure Math.", vol. XIV, Amer. Math. Society (Providence, 1970), 133-163. Zbl0215.53001MR271991
  5. PAZY, A., A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. Zbl0305.47022MR374996DOI10.1007/BF02756753
  6. SOTOMAYOR, J., Smooth dependence of solutions of differential equations on initial data: a simple proof, Bol. Soc. Brasil. Mat., 4 (1973), 55-59. Zbl0337.34005MR361238DOI10.1007/BF02584856
  7. TEMAM, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New York, 1988). Zbl0662.35001MR953967DOI10.1007/978-1-4684-0313-8
  8. VIDOSSICH, G., Continuous dependence for parabolic evolution equations, In: "Recent Trends in Differential Equations", R. P. Agarwal (ed.), World Scientific (Singapore, 1992), 559-568. Zbl0832.34058MR1180138
  9. VIDOSSICH, G., A (semi-encyclopedic) first course in ODEs, in a "never-ending" preparation since 1974. 
  10. WARD JR., J. R., Boundary value problems for differential equations in Banach space, J. Math. Anal. Appl., 70 (1979), 589-598. Zbl0438.34057MR543596DOI10.1016/0022-247X(79)90067-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.