A Survey on Vector Variational Inequalities
F. Giannessi; G. Matroeni; X. Q. Yang
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 225-237
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGiannessi, F., Matroeni, G., and Yang, X. Q.. "A Survey on Vector Variational Inequalities." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 225-237. <http://eudml.org/doc/290578>.
@article{Giannessi2009,
abstract = {The paper consists in a brief overview on Vector Variational Inequalities (VVI). The connections between VVI and Vector Optimization Problems (VOP) are considered. This leads to point out that necessary optimality conditions for a VOP can be formulated by means of a VVI when the objective function is Gâteaux differentiable and the feasible set is convex. In particular, the existence of solutions and gap functions associated with VVI are analysed. Gap functions provide an equivalent formulation of a VVI, in terms of a constrained extremum problem. Finally, Vector Complementarity Problems and their relationships with VVI are considered.},
author = {Giannessi, F., Matroeni, G., Yang, X. Q.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {225-237},
publisher = {Unione Matematica Italiana},
title = {A Survey on Vector Variational Inequalities},
url = {http://eudml.org/doc/290578},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Giannessi, F.
AU - Matroeni, G.
AU - Yang, X. Q.
TI - A Survey on Vector Variational Inequalities
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 225
EP - 237
AB - The paper consists in a brief overview on Vector Variational Inequalities (VVI). The connections between VVI and Vector Optimization Problems (VOP) are considered. This leads to point out that necessary optimality conditions for a VOP can be formulated by means of a VVI when the objective function is Gâteaux differentiable and the feasible set is convex. In particular, the existence of solutions and gap functions associated with VVI are analysed. Gap functions provide an equivalent formulation of a VVI, in terms of a constrained extremum problem. Finally, Vector Complementarity Problems and their relationships with VVI are considered.
LA - eng
UR - http://eudml.org/doc/290578
ER -
References
top- ANSARI, Q. H. - YAO, J. C., On nondifferentiable and nonconvex Vector Optimization Problems. J. Optim. Theory Appl., 106, no. 3 (2000), 475-488. Zbl0970.90092MR1797370DOI10.1023/A:1004697127040
- BROWDER FELIX, E., Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1080-1086. Zbl0148.13502MR203534DOI10.1073/pnas.56.4.1080
- CHEN, G. Y. - CHENG, G. M., Vector Variational Inequality and Vector Optimization, In "Lecture Notes in Econ. and Mathem. Systems", 285 (Springer-Verlag, New York-Berlin, 1987), 408-416.
- CHEN, G. Y., - HUANG, X. X. - YANG, X. Q., Vector optimization. Set-valued and variational analysis. Lecture Notes in Economics and Mathematical Systems, 541 (Springer-Verlag, Berlin, 2005). Zbl1104.90044MR2164220
- CHEN, G. Y. - YANG, X. Q., The vector complementary problem and its equivalences with vector minimal element in ordered spaces. J. Math. Anal. Appl., 153 (1990), 136-158. Zbl0712.90083MR1080123DOI10.1016/0022-247X(90)90270-P
- CHEN, G. Y. - YEN, N. D., On the variational inequality model for network equilibrium. Internal Report, Department of Mathematics, University of Pisa, no. 3 (1993), 196 (724).
- CRESPI, G. P. - GINCHEV, I. and ROCCA, M., Minty vector variational inequality, efficiency and proper efficiency. (English summary) Vietnam J. Math., 32, no. 1 (2004), 95-107. Zbl1056.49009MR2052725
- FANG, Y. P. - HUANG, N. J., Least element problems of feasible sets for vector F-complementarity problems with pseudomonotonicity. (Chinese) Acta Math. Sinica, 48, no. 3 (2005), 499-508. Zbl1124.90351MR2160727
- FANG, Y. P. - HUANG, N. J., Strong vector variational inequalities in Banach spaces. Applied Mathematics Letters, 19 (2006), 362-368. Zbl1138.49300MR2206227DOI10.1016/j.aml.2005.06.008
- GIANNESSI, F., Theorems of alternative, quadratic programs and complementary problems. In Cottle R. W. and Giannessi F. and Lions J. L. (eds.), Variational Inequality and Complementary Problems (Wiley, New York1980). Zbl0484.90081MR578747
- GIANNESSI, F., On Minty variational principle. In New Trends in Mathematical Programming (Kluwer Academic Publishers, 1998), 93-99. Zbl0909.90253MR1641312DOI10.1007/978-1-4757-2878-1_8
- F. GIANNESSI (ed.), Vector Variational Inequalities and Vector Equilibria. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000. Zbl0952.00009MR1789109DOI10.1007/978-1-4613-0299-5
- HARKER, P. T. - PANG, J. S., Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Programming (Ser. B), 48, no. 2 (1990), 161-220. Zbl0734.90098MR1073707DOI10.1007/BF01582255
- HUANG, N. J. - FANG, Y. P., Strong vector F-complementary problem and least element problem of feasible set. Nonlinear Anal., 61, no. 6 (2005), 901-918. Zbl1135.90411MR2131786DOI10.1016/j.na.2005.01.021
- KINDERLEHRER, D. - STAMPACCHIA, G., An introduction to variational inequalities and their applications. Academic Press, New York, 1980. Zbl0457.35001MR567696
- KONNOV, I. V. - YAO, J. C., On the generalized vector variational inequality problem. J. Math. Anal. Appl., 206, no. 1 (1997), 42-58. Zbl0878.49006MR1429278DOI10.1006/jmaa.1997.5192
- LASSONDE, MARC, On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl., 97, no. 1 (1983), 151-201. Zbl0527.47037MR721236DOI10.1016/0022-247X(83)90244-5
- LEE, G. M. - KIM, D. S. - LEE, B. S. - CHEN, G. Y., Generalized Vector Variational Inequality and its duality for set-valued maps. Appl. Mathem. Lett., 11 (1998), 21-26. Zbl0940.49008MR1630760DOI10.1016/S0893-9659(98)00050-0
- LEE, G. M. - KIM, D. S. - LEE, B. S. - CHEN, G. Y., Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal., 34, no. 5 (1998), 745-765. Zbl0956.49007MR1634819DOI10.1016/S0362-546X(97)00578-6
- MASTROENI, G., On Minty Vector Variational Inequality. In [12], 351-361. Zbl0998.49005MR1789128DOI10.1007/978-1-4613-0299-5_20
- MENG, K. W. - LI, S. J., Differential and sensitivity properties of gap functions for Minty vector variational inequalities. J. Math. Anal. Appl., 337, no. 1 (2008), 386-398. Zbl1120.49007MR2356078DOI10.1016/j.jmaa.2007.04.009
- MOSCO, U., Implicit variational problems and quasi variational inequalities. Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in Math., 543 (Springer, Berlin, 1976), 83-156. MR513202
- WARD, D. E. - LEE, G. M., On relations between Vector Optimization Problems and Vector Variational Inequalities. J. Optim. Theory Appl., 113, no. 3 (2002), 583-596. Zbl1022.90024MR1904240DOI10.1023/A:1015364905959
- YANG, X. M. - YANG, X. Q. - TEO, K. L., Some Remarks On Minty Vector Variational Inequality. J. Optim. Theory Appl., 121, no. 1 (2004), 193-201. Zbl1140.90492MR2062976DOI10.1023/B:JOTA.0000026137.18526.7a
- YANG, X. Q., Vector complementarity and minimal element problems. J. Optim. Theory Appl., 77, no. 3 (1993), 483-495. Zbl0796.49014MR1233298DOI10.1007/BF00940446
- YANG, X. Q., Vector variational inequalities and its duality. Nonl. Anal., TMA, 21 (1993), 867-877. MR1249666DOI10.1016/0362-546X(93)90052-T
- YANG, X. Q. - GOH, C. J., On vector variational inequalities: application to vector equilibria. J. Optim. Theory Appl., 95 (1997), 431-443. Zbl0892.90158MR1477369DOI10.1023/A:1022647607947
- YEN, N. D. - LEE, G. M., On monotone and strongly monotone Vector Variational Inequalities. In [12], 467-478. Zbl0993.49013MR1789136DOI10.1007/978-1-4613-0299-5_28
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.