A Montel Type Result for Subharmonic Functions
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 2, page 423-444
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSupper, R.. "A Montel Type Result for Subharmonic Functions." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 423-444. <http://eudml.org/doc/290583>.
@article{Supper2009,
abstract = {This article is devoted to sequences $(u_\{n\})_\{n\}$ of subharmonic functions in $\mathbb\{R\}^\{N\}$, with finite order, whose means $J_\{u_\{n\}\}(r)$ (over spheres centered at the origin, with radius r) satisfy such a condition as: $\forall r > 0$, $\exists A_\{r\} > 0$ such that $J_\{u_\{n\}\}(r) \le A_\{r\}$, $\forall n \in \mathbf\{N\}$. The paper investigates under which conditions one may extract a pointwise or uniformly convergent subsequence.},
author = {Supper, R.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {423-444},
publisher = {Unione Matematica Italiana},
title = {A Montel Type Result for Subharmonic Functions},
url = {http://eudml.org/doc/290583},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Supper, R.
TI - A Montel Type Result for Subharmonic Functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 423
EP - 444
AB - This article is devoted to sequences $(u_{n})_{n}$ of subharmonic functions in $\mathbb{R}^{N}$, with finite order, whose means $J_{u_{n}}(r)$ (over spheres centered at the origin, with radius r) satisfy such a condition as: $\forall r > 0$, $\exists A_{r} > 0$ such that $J_{u_{n}}(r) \le A_{r}$, $\forall n \in \mathbf{N}$. The paper investigates under which conditions one may extract a pointwise or uniformly convergent subsequence.
LA - eng
UR - http://eudml.org/doc/290583
ER -
References
top- ANDERSON, J. M. - BAERNSTEIN, A., The size of the set on which a meromorphic function is large, Proc. London Math. Soc., 36 (3) (1978), 518-539. Zbl0381.30014MR481006DOI10.1112/plms/s3-36.3.518
- FROSTMAN, O., Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, 3 (1935), 1-118. Zbl61.1262.02
- HAYMAN, W. K. - KENNEDY, P. B., Subharmonic functions, Vol.I, London Mathematical Society Monographs, Academic Press, London-New York, 9 (1976). Zbl0419.31001MR460672
- HELMS, L. L., Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, XXII (1969). Zbl0188.17203MR261018
- KONDRATYUK, A. A. - TARASYUK, S. I., Compact operators and normal families of subharmonic functions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague (1996), 227-231. Zbl0861.31002MR1480944
- LANDKOF, N. S., Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York, Springer-Verlag, 180 (1972). MR350027
- RIESZ, F., Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel II, Acta Math., 54 (1930), 321-360. Zbl56.0426.01MR1555311DOI10.1007/BF02547526
- RONKIN, L. I., Functions of completely regular growth, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers' Group, Dordrecht, 81 (1992). MR1196691DOI10.1007/978-94-011-2418-8
- SUPPER, R., Subharmonic functions and their Riesz measure, Journal of Inequalities in Pure and Applied Mathematics, 2, no. 2 (2001), Paper No. 16, 14 p. http://jipam.vu.edu.au. Zbl0988.31001MR1873856
- SUPPER, R., Subharmonic functions of order less than one, Potential Analysis, Springer, 23, no. 2 (2005), 165-179. Zbl1076.31005MR2139215DOI10.1007/s11118-004-6319-z
- YGER, A., Analyse complexe et distributions; éditeur: Ellipses (2001).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.