Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale

Maria Chiara Brambilla; Daniele Faenzi

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 71-91
  • ISSN: 0392-4041

Abstract

top
In the first part of the paper we complete the classification of the arithmetical Cohen-Macaulay vector bundles of rank 2 on a smooth prime Fano threefold. In the second part, we study some moduli spaces of these vector bundles, using the decomposition of the derived category of X provided by Kuznetsov, when the genus of X is 7 or 9. This allows to prove that such moduli spaces are birational to Brill-Noether varieties of vector bundles on a smooth projective curve Γ . When the second Chern class is low we are able to give a more precise description of the moduli space of rank-2 semistable sheaves with fixed Chern classes 𝐌 X ( 2 , c 1 , c 2 ) . If g = 7 , we show that the moduli space 𝐌 X ( 2 , 1 , 6 ) is isomorphic to a smooth irreducible Brill-Noether variety of dimension 3. Moreover the set of vector bundles contained in 𝐌 X ( 2 , 0 , 4 ) is smooth irreducible of dimension 5. If g = 9 , we prove that 𝐌 X ( 2 , 1 , 7 ) is isomorphic to the blow-up of Pic ( Γ ) , where Γ is a plane smooth quartic. If g = 12 , an open set of 𝐌 X ( 2 , 1 , d ) can be described as a quotient with respect to the action of a semisimple group in terms of monads.

How to cite

top

Brambilla, Maria Chiara, and Faenzi, Daniele. "Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 71-91. <http://eudml.org/doc/290586>.

@article{Brambilla2009,
author = {Brambilla, Maria Chiara, Faenzi, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {2},
number = {1},
pages = {71-91},
publisher = {Unione Matematica Italiana},
title = {Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale},
url = {http://eudml.org/doc/290586},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Brambilla, Maria Chiara
AU - Faenzi, Daniele
TI - Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 71
EP - 91
LA - ita
UR - http://eudml.org/doc/290586
ER -

References

top
  1. ALTMAN, ALLEN B. - KLEIMAN, STEVEN L., Compactifying the Picard scheme, Adv. in Math.35, no. 1 (1980), 50-112. Zbl0427.14015MR555258DOI10.1016/0001-8708(80)90043-2
  2. ARRONDO, ENRIQUE - COSTA, LAURA, Vector bundles on Fano 3-folds without intermediate cohomology, Comm. Algebra, 28, no. 8 (2000), 3899-3911. Zbl1004.14010MR1767596DOI10.1080/00927870008827064
  3. ARRONDO, ENRIQUE - FAENZI, DANIELE, Vector bundles with no intermediate cohomology on Fano threefolds of type V 22 , Pacific J. Math., 225, no. 2 (2006), 201-220. Zbl1123.14025MR2233732DOI10.2140/pjm.2006.225.201
  4. ATIYAH, MICHAEL F. - HITCHIN, NIGEL J. - DRINFEL'D, VLADIMIR G. - MANIN, YURI I., Construction of instantons, Phys. Lett. A, 65, no. 3 (1978), 185-187. Zbl0424.14004MR598562DOI10.1016/0375-9601(78)90141-X
  5. BARTH, WOLF - HULEK, KLAUS, Monads and moduli of vector bundles, Manuscripta Math.25, no. 4 (1978), 323-347. Zbl0395.14007MR509589DOI10.1007/BF01168047
  6. BRAMBILLA, MARIA CHIARA - FAENZI, DANIELE, Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci, Preprint, 2007. Zbl1300.14040MR3189780DOI10.1142/S0129167X14500232
  7. BRAMBILLA, MARIA CHIARA - FAENZI, DANIELE, Moduli spaces of rank 2 ACM bundles on prime Fano threefolds, Arxiv preprint, http://arxiv.org/abs/ 0806.2265, 2008. Zbl1223.14047MR2785867DOI10.1307/mmj/1301586307
  8. BRAMBILLA, MARIA CHIARA - FAENZI, DANIELE, Rank 2 ACM bundles with trivial determinant on Fano threefolds of genus 7, Preprint, 2008. Zbl1223.14047MR2785867DOI10.1307/mmj/1301586307
  9. BRAMBILLA, MARIA CHIARA - FAENZI, DANIELE, Rank 2 stable sheaves with odd determinant on Fano threefolds of genus 9, Preprint, 2008. Zbl1286.14059
  10. BUCHWEITZ, RAGNAR-OLAF - GREUEL, GERT-MARTIN - SCHREYER, FRANK-OLAF, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., 88, no. 1 (1987), 165-182. MR877011DOI10.1007/BF01405096
  11. CASANELLAS, MARTA - DROZD, ELENA - HARTSHORNE, ROBIN, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math., 584 (2005), 149-171. MR2155088DOI10.1515/crll.2005.2005.584.149
  12. CASANELLAS, MARTA - HARTSHORNE, ROBIN, Gorenstein biliaison and ACM sheaves, J. Algebra, 278, no. 1 (2004), 314-341. MR2068080DOI10.1016/j.jalgebra.2003.11.013
  13. DRUEL, STÉPHANE, Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern c 1 = 0 , c 2 = 2 et c 3 = 0 sur la cubique de 𝐏 4 , Internat. Math. Res. Notices, no. 19 (2000), 985-1004. MR1792346DOI10.1155/S1073792800000519
  14. EISENBUD, DAVID - HERZOG, JÜRGEN, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann., 280, no. 2 (1988), 347-352. Zbl0616.13011MR929541DOI10.1007/BF01456058
  15. FAENZI, DANIELE, Bundles over Fano threefolds of type V 22 , Ann. Mat. Pura Appl. (4) 186, no. 1 (2007), 1-24. Zbl1232.14025MR2263329DOI10.1007/s10231-005-0161-9
  16. FANO, GINO, Sulle varietà a tre dimensioni a curve-sezioni canoniche, Mem. R. Acad. D'Italia, 8, (1937), 23-64. Zbl0015.37201
  17. GRUSON, LAURENT - LAYTIMI, FATIMA - NAGARAJ, DONIHAKKALU S., On prime Fano threefolds of genus 9, Internat. J. Math., 17, no. 3 (2006), 253-261. Zbl1094.14027MR2215149DOI10.1142/S0129167X06003461
  18. GORODENTSEV, ALEXEI L., Exceptional objects and mutations in derived categories, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 57-73. MR1074783DOI10.1017/CBO9780511721526.007
  19. HARTSHORNE, ROBIN, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR463157
  20. HUYBRECHTS, DANIEL - LEHN, MANFRED, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl0872.14002MR1450870DOI10.1007/978-3-663-11624-0
  21. HORROCKS, GEOFFREY, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. Zbl0126.16801MR169877DOI10.1112/plms/s3-14.4.689
  22. ILIEV, ATANAS, The S p 3 -Grassmannian and duality for prime Fano threefolds of genus 9, Manuscripta Math., 112, no. 1 (2003), 29-53. Zbl1078.14528MR2005929DOI10.1007/s00229-003-0387-z
  23. ILIEV, ATANAS - MANIVEL, LAURENT, Prime Fano Threefolds and Integrable Systems, Available at http://www.arxiv.org/abs/math.AG/0606211, 2006. Zbl1136.14026MR2341908DOI10.1007/s00208-007-0145-8
  24. ILIEV, ATANAS - MANIVEL, LAURENT, Pfaffian lines and vector bundles on Fano threefolds of genus 8, J. Algebraic Geom., 16, no. 3 (2007), 499-530. Zbl1123.14026MR2306278DOI10.1090/S1056-3911-07-00440-7
  25. ILIEV, ATANAS - MARKUSHEVICH, DIMITRI, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., 5 (2000), 23-47 (electronic). Zbl0938.14021MR1739270
  26. ILIEV, ATANAS - MARKUSHEVICH, DIMITRI, Elliptic curves and rank-2 vector bundles on the prime Fano threefold of genus 7, Adv. Geom., 4, no. 3 (2004), 287-318. Zbl1074.14039MR2071808DOI10.1515/advg.2004.018
  27. ILIEV, ATANAS - MARKUSHEVICH, DIMITRI, Parametrization of Sing ( Θ ) for a Fano 3-fold of Genus 7 by Moduli of Vector Bundles, Available at http://www.arxiv.org/abs/math.AG/0403122, 2004. Zbl1074.14039MR2372725DOI10.4310/AJM.2007.v11.n3.a4
  28. ILIEV, ATANAS - RANESTAD, KRISTIAN, Geometry of the Lagrangian Gras- smannian 𝐋𝐆 ( 3 , 6 ) with applications to Brill-Noether loci, Michigan Math. J.53, no. 2 (2005), 383-417. Zbl1084.14042MR2152707DOI10.1307/mmj/1123090775
  29. ISKOVSKIKH, VASILII A. - PROKHOROV, YURI. G., Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1-247. MR1668579
  30. ISKOVSKIH, VASILII A., Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41, no. 3 (1977), 516-562, 717. MR463151
  31. ISKOVSKIH, VASILII A., Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat., 42, no. 3 (1978), 506-549, English translation in Math. U.S.S.R. Izvestija, 12, no. 3 (1978), 469-506 (translated by Miles Reid). MR503430
  32. KNOÈRRER, HORST, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math.88, no. 1 (1987), 153-164. MR877010DOI10.1007/BF01405095
  33. KUZNETSOV, ALEXANDER G., Derived categories of the Fano threefolds V 12 , Mat. Zametki, 78, no. 4 (2005), 579-594, English translation in Math. Notes, 78, no. 3-4 (2005), 537-550. MR2226730DOI10.1007/s11006-005-0152-6
  34. KUZNETSOV, ALEXANDER G., Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat., 70, no. 3 (2006), 23-128, Available at http://www.arxiv.org/abs/math.AG/0503700. Zbl1133.14016MR2238172DOI10.1070/IM2006v070n03ABEH002318
  35. MADONNA, CARLO, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl.47, no. 2 (2002), 211-222 (2003). Zbl1051.14050MR1979043
  36. MERCAT, VINCENT, Fibrés stables de pente 2, Bull. London Math. Soc.33, no. 5 (2001), 535-542. MR1844550DOI10.1112/S0024609301008256
  37. MUKAI, SHIGERU - UMEMURA, HIROSHI, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, 490-518. MR726439DOI10.1007/BFb0099976
  38. MUKAI, SHIGERU, Curves, K 3 surfaces and Fano 3-folds of genus 10 , Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, 357-377. MR977768
  39. MUKAI, SHIGERU, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A., 86, no. 9 (1989), 3000-3002. Zbl0679.14020MR995400DOI10.1073/pnas.86.9.3000
  40. MUKAI, SHIGERU, Curves and symmetric spaces. I, Amer. J. Math., 117, no. 6 (1995), 1627-1644. Zbl0871.14025MR1363081DOI10.2307/2375032
  41. OTTAVIANI, GIORGIO, Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (4) 155 (1989), 317-341. Zbl0718.14010MR1042842DOI10.1007/BF01765948
  42. PROKHOROV, YURI G., Exotic Fano varieties, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3 (1990), 34-37, 111. MR1064296
  43. TAN, XIAO JIANG, Some results on the existence of rank two special stable vector bundles, Manuscripta Math.75, no. 4 (1992), 365-373. Zbl0766.14026MR1168174DOI10.1007/BF02567091
  44. TEIXIDOR I BIGAS, MONTSERRAT, Brill-Noether theory for stable vector bundles, Duke Math. J.62, no. 2 (1991), 385-400. Zbl0739.14006MR1104529DOI10.1215/S0012-7094-91-06215-0
  45. TEIXIDOR I BIGAS, MONTSERRAT, Brill-Noether theory for vector bundles of rank 2, Tohoku Math. J., (2) 43, no. 1 (1991), 123-126. Zbl0702.14009MR1088719DOI10.2748/tmj/1178227540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.