Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei

Andrea Tommasoli

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 2, page 295-297
  • ISSN: 1972-7356

How to cite

top

Tommasoli, Andrea. "Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 2.2 (2009): 295-297. <http://eudml.org/doc/290630>.

@article{Tommasoli2009,
author = {Tommasoli, Andrea},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {8},
number = {2},
pages = {295-297},
publisher = {Unione Matematica Italiana},
title = {Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei},
url = {http://eudml.org/doc/290630},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Tommasoli, Andrea
TI - Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2009/8//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 295
EP - 297
LA - ita
UR - http://eudml.org/doc/290630
ER -

References

top
  1. BONFIGLIOLI, A., LANCONELLI, E. e UGUZZONI, F., Stratified Lie groups and potential theory for their sub-Laplacians (Springer, 2007). Zbl1128.43001MR2363343
  2. CINTI, C., Sub-solutions and mean-value operators for ultraparabolic equations on Lie groups, Mathematica Scandinavica, 101 (2007), 83-103. Zbl1153.35352MR2353243DOI10.7146/math.scand.a-15033
  3. CINTI, C. e LANCONELLI, E., Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Pot. Analysis, 30 (2009), 179-200. Zbl1172.31001MR2471147DOI10.1007/s11118-008-9112-6
  4. GUTIÉRREZ, C. E. and LANCONELLI, E., Maximum Principle, nonhomogeneous Harnack inequality, and Liouville theorems for X-elliptic operators, Comm. in Partial Diff. Eq., 28 (2003), 11,12:1833-1862. Zbl1064.35036MR2015404DOI10.1081/PDE-120025487
  5. KOGOJ, A. E. and LANCONELLI, E., X-elliptic operators and X-control distances, Ricerche Mat., 49, Special issue in memory of E. De Giorgi (2000), 223-243. Zbl1029.35102MR1826225
  6. KOGOJ, A. E. and LANCONELLI, E., An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterranean Journal of Mathematics, 1 (2004), 51-80. Zbl1150.35354MR2088032DOI10.1007/s00009-004-0004-8
  7. KURAN, Ü., A new criterion of Dirichlet Regularity via the Quasi-Boundedness of the fundamental Superharmonic Function, J. London Math. Soc., 19 (1979), 301-311. Zbl0404.31003MR533330DOI10.1112/jlms/s2-19.2.301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.