q-Hypergeometric Functions and Irrationality Measures

Ville Merilä

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 137-148
  • ISSN: 0392-4041

Abstract

top
We present a q-analogue of the Rhin-Viola method for the analysis of Φ -adic valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral representation of the Heine series 2 ϕ 1 . Moreover, we show that this approach yields the best known irrationality measures for log q ( z ) , log q ( 2 ) and ζ q ( 1 ) .

How to cite

top

Merilä, Ville. "q-Hypergeometric Functions and Irrationality Measures." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 137-148. <http://eudml.org/doc/290639>.

@article{Merilä2010,
abstract = {We present a q-analogue of the Rhin-Viola method for the analysis of $\Phi$-adic valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral representation of the Heine series $2\phi_\{1\}$. Moreover, we show that this approach yields the best known irrationality measures for $\log_\{q\}(z)$, $\log_\{q\}(2)$ and $\zeta_\{q\}(1)$.},
author = {Merilä, Ville},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {137-148},
publisher = {Unione Matematica Italiana},
title = {q-Hypergeometric Functions and Irrationality Measures},
url = {http://eudml.org/doc/290639},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Merilä, Ville
TI - q-Hypergeometric Functions and Irrationality Measures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 137
EP - 148
AB - We present a q-analogue of the Rhin-Viola method for the analysis of $\Phi$-adic valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral representation of the Heine series $2\phi_{1}$. Moreover, we show that this approach yields the best known irrationality measures for $\log_{q}(z)$, $\log_{q}(2)$ and $\zeta_{q}(1)$.
LA - eng
UR - http://eudml.org/doc/290639
ER -

References

top
  1. ANDREWS, G. E. - ASKEY, R. - ROY, R., Special functions, Encyclopedia of Mathematics and Its Applications, 71 (Cambridge University Press, Cambridge, 1999), xvi+664. MR1688958DOI10.1017/CBO9781107325937
  2. CHUDNOVSKY, G. V., Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π , Lect. Notes in Math., 925 (1982), 299-322. MR659875
  3. HATA, M., Legendre type polynomials and irrationality measures, J. Reine Angew. Math., 407 (1990), 99-125. MR1048530DOI10.1515/crll.1990.407.99
  4. MATALA-AHO, T. - VÄÄNÄNEN, K. - ZUDILIN, W., New irrationality measures for q-logarithms, Math.Comp., 75, no. 254 (2006), 879-889. Zbl1158.11033MR2196997DOI10.1090/S0025-5718-05-01812-0
  5. MERILÄ, V., On arithmetical properties of certain q-series, Results Math., 53, no. 1-2 (2009), 129-151. Zbl1192.11041MR2481409DOI10.1007/s00025-008-0297-1
  6. RHIN, G. - VIOLA, C., On a permutation group related to ζ ( 2 ) , Acta Arith., 77, no. 1 (1996), 23-56. Zbl0864.11037MR1404975DOI10.4064/aa-77-1-23-56
  7. VIOLA, C., Hypergeometric functions and irrationality measures, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247 (Cambridge Univ. Press, Cambridge, 1997), 353-360. Zbl0904.11020MR1695002DOI10.1017/CBO9780511666179.024
  8. ZUDILIN, W., Remarks on irrationality of q-harmonic series, Manuscripta Math., 107, no. 4 (2002), 463-477. Zbl1044.11068MR1906771DOI10.1007/s002290200249
  9. ZUDILIN, W., Heine's basic transform and a permutation group for q-harmonic series, Acta Arith., 111, no. 2 (2004), 153-164. Zbl1052.11053MR2039419DOI10.4064/aa111-2-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.