Differential Equations and Para-CR Structures
C. Denson Hill; Paweł Nurowski
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 1, page 25-91
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALEKSEEVSKY, D. V. - MEDORI, C. - TOMASSINI, A., Maximally homogeneous para-CR manifolds of semisimple type, to appear in Handbook of Pseudo-Riemannian geometry and Supersymmetry (2008), arXiv:0808.0431 MR2681601DOI10.4171/079-1/16
- CARTAN, E., Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du seconde ordre, Ann. Sc. Norm. Sup., 27 (1910), 109-192. Zbl41.0417.01MR1509120
- CARTAN, E., Varietés à connexion projective, Bull. Soc. Math., LII (1924), 205-241. Zbl50.0500.02MR1504846
- CHERN, S. S., The geometry of the differential equations , Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111. MR4538
- FEFFERMAN, C. - GRAHAM, C. R., Conformal invariants, in Elie Cartan et mathematiques d'aujourd'hui, Asterisque, hors serie (Societe Mathematique de France, Paris) (1985), 95-116. MR837196
- FRITELLI, S. - KOZAMEH, C. N. - NEWMAN, E. T., GR via characteristic surfaces, J. Math. Phys., 36 (1995), 4984-. Zbl0848.53045MR1347127DOI10.1063/1.531210
- FRITELLI, S. - NEWMAN, E. T. - NUROWSKI, P., Conformal Lorentzian metrics on the spaces of curves and 2-surfaces, Class. Q. Grav., 20 (2003), 3649-3659. Zbl1050.83021MR2001687DOI10.1088/0264-9381/20/16/308
- GODLINSKI, M., Geometry of Third-Order Ordinary Differential Equations and Its Applications in General Relativity, PhD Thesis, Warsaw University (2008), arXiv: 0810.2234.
- GODLINSKI, M. - NUROWSKI, P., Geometry of third-order ODEs (2009), arXiv: 0902.4129. MR2501740DOI10.1016/j.geomphys.2008.11.015
- GOVER, A. R. - NUROWSKI, P., Obstructions to conformally Einstein metrics in n dimensions, Journ. Geom. Phys., 56 (2006), 450-484. Zbl1098.53014MR2171895DOI10.1016/j.geomphys.2005.03.001
- LIE, S., Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III, in Gesammelte Abhandlungen, Vol. 5 (Teubner, Leipzig, 1924). Zbl15.0751.03
- LEISTNER, TH. - NUROWSKI, P., Ambient metrics for n-dimensional pp-waves (2008), arXiv:0810.2903. Zbl1207.53028MR2628825DOI10.1007/s00220-010-0995-x
- LEWANDOWSKI, J., Reduced holonomy group and Einstein equations with a cosmological constant, Class. Q. Grav., 9 (1992), L147-L151. Zbl0773.53051MR1184492
- NUROWSKI, P., Differential equations and conformal structures, Journ. Geom. Phys., 55 (2005), 19-49. Zbl1082.53024MR2157414DOI10.1016/j.geomphys.2004.11.006
- NUROWSKI, P. - ROBINSON, D. C., Intrinsic geometry of a null hypersurface, Class. Q. Grav., 17 (2000), 4065-4084. Zbl1085.53504MR1789400DOI10.1088/0264-9381/17/19/308
- NUROWSKI, P. - SPARLING, G. A. J., Three dimensional Cauchy-Riemann structures and second order ordinary differential equations, Class. Q. Grav., 20 (2003), 4995-5016. Zbl1051.32019MR2024797DOI10.1088/0264-9381/20/23/004
- OLVER, P. J., Equivalence Invariants and Symmetry, Cambridge University Press (Cambridge, 1996). Zbl1156.58002MR1337276DOI10.1017/CBO9780511609565
- PERKINS, K., The Cartan-Weyl conformal geometry of a pair of second-order partial-differential equations, PhD Thesis, Department of Physics & Astronomy (University of Pittsburgh, 2006).
- TANAKA, N., On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 14 (1985), 277-351. Zbl0585.53044MR808817DOI10.14492/hokmj/1381757644
- TRESSE, M. A., Determinations des invariants ponctuels de l'equation differentielle ordinaire du second ordre , Hirzel (Leipzig, 1896). Zbl27.0254.01
- WUÈ NSCHMANN, K., Über Beruhrungsbedingungen bei Differentialgleichungen, Dissertation (Greifswald, 1905).