Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem

Anna Avallone; Giuseppina Barbieri; Paolo Vitolo

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 447-470
  • ISSN: 0392-4041

Abstract

top
We prove a Hahn decomposition theorem for modular measures on pseudo-D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem concerning compactness and convexity of the closure of the range.

How to cite

top

Avallone, Anna, Barbieri, Giuseppina, and Vitolo, Paolo. "Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 447-470. <http://eudml.org/doc/290642>.

@article{Avallone2010,
abstract = {We prove a Hahn decomposition theorem for modular measures on pseudo-D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem concerning compactness and convexity of the closure of the range.},
author = {Avallone, Anna, Barbieri, Giuseppina, Vitolo, Paolo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {447-470},
publisher = {Unione Matematica Italiana},
title = {Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem},
url = {http://eudml.org/doc/290642},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Avallone, Anna
AU - Barbieri, Giuseppina
AU - Vitolo, Paolo
TI - Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 447
EP - 470
AB - We prove a Hahn decomposition theorem for modular measures on pseudo-D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem concerning compactness and convexity of the closure of the range.
LA - eng
UR - http://eudml.org/doc/290642
ER -

References

top
  1. AVALLONE, A. - BARBIERI, G., Range of finitely additive fuzzy measures, Fuzzy Sets and Systems, 89 (2) (1997), 231-241. Zbl0918.28020MR1456048DOI10.1016/S0165-0114(96)00099-1
  2. AVALLONE, A. - BARBIERI, G., Lyapunov measures on effect algebras, Comment. Math. Univ. Carolin., 44 (2003), 389-397. Zbl1097.22002MR2025808
  3. AVALLONE, A. - VITOLO, P., Pseudo-D-lattices and topologies generated by measures, Ital. J. Pure Appl. Math., To appear. Zbl1329.28023MR3009591
  4. AVALLONE, A. - BARBIERI, G. - VITOLO, P., Hahn decomposition of modular measures and applications, Comment. Math. Prace Mat., 43 (2003), 149-168. Zbl1043.28009MR2029889
  5. BARBIERI, G., Lyapunov's theorem for measures on D-posets, Internat. J. Theoret. Phys., 43 (2004), 1613-1623. Zbl1081.81007MR2108298DOI10.1023/B:IJTP.0000048807.37145.cc
  6. BENNETT, M. K. - FOULIS, D. J., Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday, Found. Phys., 24 (10) (1994), 1331-1352. MR1304942DOI10.1007/BF02283036
  7. BUTNARIU, D. - KLEMENT, P., Triangular Norm-based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht, 1993. Zbl0804.90145MR2867321DOI10.1007/978-94-017-3602-2
  8. CHOVANEK, F. - KOPKA, F., D-posets, Math. Slovaca, 44 (1) (1994), 21-34. MR1290269
  9. DVUREČENSKIJ, A., Central elements and Cantor-Bernstein theorem for pseudo-effect algebras, Journal of the Australian Mathematical Society, 74 (2003), 121-143. MR1948263DOI10.1017/S1446788700003177
  10. DVUREČENSKIJ, A. - PULMANNOVÁ, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000. MR1861369DOI10.1007/978-94-017-2422-7
  11. DVUREČENSKIJ, A. - VETTERLEIN, T., Congruences and states on pseudoeffect algebras, Found. Phys. Letters, 14 (2001), 425-446. MR1857794DOI10.1023/A:1015561420306
  12. EPSTEIN, L. G. - ZHANG, J., Subjective probabilities on subjectively unambiguous events, Econometrica, 69 (2) (2001), 265-306. Zbl1020.91048MR1819756DOI10.1111/1468-0262.00193
  13. GEORGESCU, G. - IORGULESCU, A., Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (2001), 97-114. Zbl0986.06018MR1934824
  14. PULMANNOVÁ, S., Generalized Sasaki projections and Riesz ideals in pseudoeffect algebras, International Journal of Theoretical Physics, 42 (7) (2003), 1413-1423. Zbl1053.81008MR2021220DOI10.1023/A:1025723811099
  15. KADETS, V. M., A remark on Lyapunov's theorem on a vector measure, Funct. Anal. Appl., 25 (4) (1991), 295-297. Zbl0762.46031MR1167727DOI10.1007/BF01080087
  16. YUN, S. - YONGMING, L. - MAOYIN, C., Pseudo difference posets and pseudo Boolean D-posets, Internat. J. Theoret. Phys., 43 (12) (2004), 2447-2460. Zbl1059.81018MR2110077DOI10.1007/s10773-004-7710-7
  17. UHL, J., The range of a vector-valued measure, Proc. Amer. Math. Soc., 23 (1969), 158-163. Zbl0182.46903MR264029DOI10.2307/2037509
  18. WEBER, H., Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings, Ann. Mat. Pura Appl., 160 (4) (1991), 347-370. Zbl0790.06006MR1163215DOI10.1007/BF01764134
  19. WEBER, H., On modular functions, Funct. Approx. Comment. Math., 24 (1996), 35-52. Zbl0887.06011MR1453447
  20. WEBER, H., Uniform lattices and modular functions, Atti Sem. Mat. Fis. Univ. Modena, 47 (1) (1999), 159-182. Zbl0989.28007MR1694416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.