Projective Geometry Related to the Singularities of Theta Divisors of Jacobians

C. Ciliberto; E. Sernesi

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 93-109
  • ISSN: 0392-4041

Abstract

top
By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus g 5 , we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.

How to cite

top

Ciliberto, C., and Sernesi, E.. "Projective Geometry Related to the Singularities of Theta Divisors of Jacobians." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 93-109. <http://eudml.org/doc/290664>.

@article{Ciliberto2010,
abstract = {By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus $g \ge 5$, we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.},
author = {Ciliberto, C., Sernesi, E.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {93-109},
publisher = {Unione Matematica Italiana},
title = {Projective Geometry Related to the Singularities of Theta Divisors of Jacobians},
url = {http://eudml.org/doc/290664},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Ciliberto, C.
AU - Sernesi, E.
TI - Projective Geometry Related to the Singularities of Theta Divisors of Jacobians
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 93
EP - 109
AB - By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus $g \ge 5$, we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.
LA - eng
UR - http://eudml.org/doc/290664
ER -

References

top
  1. ANDREOTTI, A. - MAYER, A., On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa, 21 (3) (1967), 189-238. Zbl0222.14024MR220740
  2. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, PH. - HARRIS, J., Geometry of algebraic curves, Volume I, Grundlehren der math. Wisensch, 267 (Springer-Verlag, 1984). MR2807457DOI10.1007/978-3-540-69392-5
  3. ARBARELLO, E. - HARRIS, J., Canonical curves and quadrics of rank 4, Compositio Math., 43 (1981), 145-179. Zbl0494.14011MR622446
  4. BAJRAVANI, A., Focal varieties of curves of genus 6 and 8, preprint. Zbl1194.14047MR2639443DOI10.1007/s12215-010-0009-z
  5. CILIBERTO, C. - VAN DER GEER, G., Andreotti-Mayer Loci and the Schottky Problem, Documenta Math., 13 (2008), 453-504. MR2520473
  6. CILIBERTO, C. - SERNESI, E., Singularities of the theta divisor and congruences of planes, J. Algebraic Geom., 1 (1992), 231-250. Zbl0787.14019MR1144438
  7. CILIBERTO, C. - SERNESI, E., Singularities of the Theta Divisor and Families of Secant Spaces to a Canonical Curve, J. Algebra, 171 (1995), 867-893. Zbl0827.14016MR1315925DOI10.1006/jabr.1995.1040
  8. CILIBERTO, C. - SERNESI, E., On the geometry of canonical curves of odd genus, Comm. in Alg., 28 (12) (2000), 5993-6002. Zbl1005.14011MR1808615DOI10.1080/00927870008827200
  9. DARBOUX, G., Sur le contact des courbes et des surfaces, Bull. Soc. math. de France, 4 (2) (1880). Zbl12.0590.01
  10. EISENBUD, D., Linear sections of determinantal varieties, American J. of Math., 110 (1988), 541-575. Zbl0681.14028MR944327DOI10.2307/2374622
  11. GREEN, M., Quadrics of rank four in the ideal of the canonical curve, Invent. Math., 75 (1984), 85-104. Zbl0542.14018MR728141DOI10.1007/BF01403092
  12. ROGORA, E., Varieties with many lines, Manuscripta math., 82 (1994), 207-226. Zbl0812.14038MR1256160DOI10.1007/BF02567698
  13. SEGRE, B., Sulle V n contenenti più di n - k S k , Nota II, Rend. Accad. Naz. Lincei, 5 (8) (1948), 275-280. MR36042
  14. SEGRE, C., Sui fochi di 2° ordine dei sistemi infiniti di piani, e sulle curve iperspaziali con una doppia infinità di piani plurisecanti. Atti R. Accad. Lincei, 30 (5) (1921), 67-71. Zbl48.0849.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.