Coactions of Hopf Algebras on Algebras in Positive Characteristic

Marilena Crupi; Gaetana Restuccia

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 2, page 349-361
  • ISSN: 0392-4041

Abstract

top
Let K be a field of positive characteristic p > 0 . We study the coactions of the Hopf algebra of the multiplicative group H m with underlying algebra H = K [ X 1 , , X n ] / ( X 1 p s 1 , , X n p s n ) , n 1 , s 1 s n 1 on a K -algebra A . We give the rule for the set of additive endomorphism of A , that define a coaction of H m on A commutative. For s 1 = = s n = 1 , we obtain the explicit expression of such coactions in terms of n derivations of A .

How to cite

top

Crupi, Marilena, and Restuccia, Gaetana. "Coactions of Hopf Algebras on Algebras in Positive Characteristic." Bollettino dell'Unione Matematica Italiana 3.2 (2010): 349-361. <http://eudml.org/doc/290666>.

@article{Crupi2010,
abstract = {Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_\{m\}$ with underlying algebra $H = K \left[ X_\{1\},\cdots,X_\{n\} \right] / (X_\{1\}^\{p^\{s_\{1\}\}\},\cdots,X_\{n\}^\{p^\{s_\{n\}\}\})$, $n \ge 1$, $s_\{1\}\ge \cdots \ge s_\{n\} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_\{m\}$ on $A$ commutative. For $s_\{1\} = \cdots = s_\{n\} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.},
author = {Crupi, Marilena, Restuccia, Gaetana},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-361},
publisher = {Unione Matematica Italiana},
title = {Coactions of Hopf Algebras on Algebras in Positive Characteristic},
url = {http://eudml.org/doc/290666},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Crupi, Marilena
AU - Restuccia, Gaetana
TI - Coactions of Hopf Algebras on Algebras in Positive Characteristic
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/6//
PB - Unione Matematica Italiana
VL - 3
IS - 2
SP - 349
EP - 361
AB - Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_{m}$ with underlying algebra $H = K \left[ X_{1},\cdots,X_{n} \right] / (X_{1}^{p^{s_{1}}},\cdots,X_{n}^{p^{s_{n}}})$, $n \ge 1$, $s_{1}\ge \cdots \ge s_{n} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_{m}$ on $A$ commutative. For $s_{1} = \cdots = s_{n} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.
LA - eng
UR - http://eudml.org/doc/290666
ER -

References

top
  1. BONANZINGA, V. - MATSUMURA, H., F m -integrable derivations, Communications in Algebra, 25 (12) (1997), 4039-4046. MR1481587DOI10.1080/00927879708826108
  2. CRUPI, M., Subring of constants of a ring of cha caracteristic p > 0 , Le matematiche, XLVIII, No 2 (1993), 203-212. Zbl0836.13003MR1320663
  3. MATSUMURA, H., Commutative Algebra, 2nd ed., Benjamin Inc. (New York, 1980). MR575344
  4. MATSUMURA, H., Commutative Ring Theory, Cambridge University Press, 1986. Zbl0603.13001MR879273
  5. MONTGOMERY, S., Hopf algebras and their actions on Rings, CBSM, Lecture notes, 82, AMS, 1993. MR1243637DOI10.1090/cbms/082
  6. OORT, F. - MUMFORD, D., Deformations and liftings of finite, cocommutative group schemes, Invent. Math., 5 (1968), 477-489. Zbl0179.49901MR228505DOI10.1007/BF01389779
  7. RESTUCCIA, G. - SCHNEIDER, H.-J., On actions of infinitesimal group schemes, J. Algebra261 (2003), 229-244. Zbl1019.16026MR1966629DOI10.1016/S0021-8693(02)00683-X
  8. RESTUCCIA, G. - SCHNEIDER, H.-J., On actions of the additive group on the Weyl algebra, Atti dell'Accademia Peloritana dei Pericolanti di Messina, Classe di Scienze Matematiche, Fisiche e Naturali, LXXXIII. ISSN: 0365-0359. C1A0501007. 
  9. RESTUCCIA, G. - TYC, A., Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic p > 0 , J. of Algebra, 159 , No. 2 (1993), 347-357. Zbl0814.16037MR1231218DOI10.1006/jabr.1993.1161
  10. SCHNEIDER, H.-J., Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math., 72 (1990), 167-195. Zbl0731.16027MR1098988DOI10.1007/BF02764619
  11. TYC, A., p -basis and smoothness in characteristc p > 0 , Proc. Am. Math. Soc., 103 (1998), 389-394. MR943051DOI10.2307/2047146
  12. WATERHOUSE, W. C., Introduction to Affine Group Schemes, in: Grad Texts in Math., Vol 66 (Springer, 1979). MR547117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.