Coactions of Hopf Algebras on Algebras in Positive Characteristic
Marilena Crupi; Gaetana Restuccia
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 2, page 349-361
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCrupi, Marilena, and Restuccia, Gaetana. "Coactions of Hopf Algebras on Algebras in Positive Characteristic." Bollettino dell'Unione Matematica Italiana 3.2 (2010): 349-361. <http://eudml.org/doc/290666>.
@article{Crupi2010,
abstract = {Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_\{m\}$ with underlying algebra $H = K \left[ X_\{1\},\cdots,X_\{n\} \right] / (X_\{1\}^\{p^\{s_\{1\}\}\},\cdots,X_\{n\}^\{p^\{s_\{n\}\}\})$, $n \ge 1$, $s_\{1\}\ge \cdots \ge s_\{n\} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_\{m\}$ on $A$ commutative. For $s_\{1\} = \cdots = s_\{n\} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.},
author = {Crupi, Marilena, Restuccia, Gaetana},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-361},
publisher = {Unione Matematica Italiana},
title = {Coactions of Hopf Algebras on Algebras in Positive Characteristic},
url = {http://eudml.org/doc/290666},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Crupi, Marilena
AU - Restuccia, Gaetana
TI - Coactions of Hopf Algebras on Algebras in Positive Characteristic
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/6//
PB - Unione Matematica Italiana
VL - 3
IS - 2
SP - 349
EP - 361
AB - Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_{m}$ with underlying algebra $H = K \left[ X_{1},\cdots,X_{n} \right] / (X_{1}^{p^{s_{1}}},\cdots,X_{n}^{p^{s_{n}}})$, $n \ge 1$, $s_{1}\ge \cdots \ge s_{n} \ge 1$ on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_{m}$ on $A$ commutative. For $s_{1} = \cdots = s_{n} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.
LA - eng
UR - http://eudml.org/doc/290666
ER -
References
top- BONANZINGA, V. - MATSUMURA, H., -integrable derivations, Communications in Algebra, 25 (12) (1997), 4039-4046. MR1481587DOI10.1080/00927879708826108
- CRUPI, M., Subring of constants of a ring of cha caracteristic , Le matematiche, XLVIII, No 2 (1993), 203-212. Zbl0836.13003MR1320663
- MATSUMURA, H., Commutative Algebra, 2nd ed., Benjamin Inc. (New York, 1980). MR575344
- MATSUMURA, H., Commutative Ring Theory, Cambridge University Press, 1986. Zbl0603.13001MR879273
- MONTGOMERY, S., Hopf algebras and their actions on Rings, CBSM, Lecture notes, 82, AMS, 1993. MR1243637DOI10.1090/cbms/082
- OORT, F. - MUMFORD, D., Deformations and liftings of finite, cocommutative group schemes, Invent. Math., 5 (1968), 477-489. Zbl0179.49901MR228505DOI10.1007/BF01389779
- RESTUCCIA, G. - SCHNEIDER, H.-J., On actions of infinitesimal group schemes, J. Algebra261 (2003), 229-244. Zbl1019.16026MR1966629DOI10.1016/S0021-8693(02)00683-X
- RESTUCCIA, G. - SCHNEIDER, H.-J., On actions of the additive group on the Weyl algebra, Atti dell'Accademia Peloritana dei Pericolanti di Messina, Classe di Scienze Matematiche, Fisiche e Naturali, LXXXIII. ISSN: 0365-0359. C1A0501007.
- RESTUCCIA, G. - TYC, A., Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic , J. of Algebra, 159 , No. 2 (1993), 347-357. Zbl0814.16037MR1231218DOI10.1006/jabr.1993.1161
- SCHNEIDER, H.-J., Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math., 72 (1990), 167-195. Zbl0731.16027MR1098988DOI10.1007/BF02764619
- TYC, A., -basis and smoothness in characteristc , Proc. Am. Math. Soc., 103 (1998), 389-394. MR943051DOI10.2307/2047146
- WATERHOUSE, W. C., Introduction to Affine Group Schemes, in: Grad Texts in Math., Vol 66 (Springer, 1979). MR547117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.