Hardy-Littlewood Type Gradient Estimates for Quasiminimizers

J. Kinnunen; M. Kotilainen; V. Latvala

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 125-136
  • ISSN: 0392-4041

Abstract

top
We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.

How to cite

top

Kinnunen, J., Kotilainen, M., and Latvala, V.. "Hardy-Littlewood Type Gradient Estimates for Quasiminimizers." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 125-136. <http://eudml.org/doc/290667>.

@article{Kinnunen2010,
abstract = {We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.},
author = {Kinnunen, J., Kotilainen, M., Latvala, V.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {125-136},
publisher = {Unione Matematica Italiana},
title = {Hardy-Littlewood Type Gradient Estimates for Quasiminimizers},
url = {http://eudml.org/doc/290667},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Kinnunen, J.
AU - Kotilainen, M.
AU - Latvala, V.
TI - Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 125
EP - 136
AB - We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.
LA - eng
UR - http://eudml.org/doc/290667
ER -

References

top
  1. ARAZY, J. - FISHER, S. D. - JANSON, S. - PEETRE, J., Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. Zbl0747.47019MR1113389DOI10.1112/jlms/s2-43.3.485
  2. BUCKLEY, S. M. - KOSKELA, P., Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. Zbl0812.35039MR1275460DOI10.1512/iumj.1994.43.43011
  3. DI BENEDETTO, E., C 1 , α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. MR709038DOI10.1016/0362-546X(83)90061-5
  4. DI BENEDETTO, E. - TRUDINGER, N. S., Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. MR778976
  5. EVANS, L. C., A new proof of local C 1 , α regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. Zbl0508.35036MR672713DOI10.1016/0022-0396(82)90033-X
  6. ERIKSSON, S-L. - KOTILAINEN, M. - LATVALA, V., Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. Zbl1130.30018MR2350589DOI10.1007/s00006-007-0043-x
  7. FLETT, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. Zbl0246.30031MR304667DOI10.1016/0022-247X(72)90081-9
  8. GIAQUINTA, M. - MODICA, G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. Zbl0409.35015MR549962
  9. GIUSTI, E., Direct methods in the calculus of variations, World Scientific, 2003. Zbl1028.49001MR1962933DOI10.1142/9789812795557
  10. GRELLIER, S. - JAMING, P., Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. Zbl1051.43004MR2054532DOI10.1002/mana.200310159
  11. HEINONEN, J. - KILPELÄINEN, T. - MARTIO, O., Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. MR1207810
  12. HARDY, G. H. - LITTLEWOOD, J. E. - PÓLYA, G., Inequalities, University Press, Cambridge, 1978. MR197653
  13. KINNUNEN, J. - MARTIO, O., Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. Zbl1035.31007MR1996447
  14. LATVALA, V., BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. MR2097241
  15. LEWIS, J. L., Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. Zbl0554.35048MR721568DOI10.1512/iumj.1983.32.32058
  16. MALÝ, J. - ZIEMER, W. P., Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997. MR1461542DOI10.1090/surv/051
  17. STOLL, M., Invariant potential theory in the unit ball of C n . London Mathematical Society, Lecture Note Series199. Cambridge University Press, Cambridge, 1994. MR1297545DOI10.1017/CBO9780511526183
  18. STOLL, M., Dirichlet and Bergman spaces of holomorphic functions in the unit ball of C n , Monats. Math., 144 (2005), 131-139. Zbl1068.32005MR2123960DOI10.1007/s00605-004-0292-x
  19. ZIEMER, W. P., A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. Zbl0601.35034MR835882DOI10.2307/2046515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.