Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
J. Kinnunen; M. Kotilainen; V. Latvala
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 1, page 125-136
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topKinnunen, J., Kotilainen, M., and Latvala, V.. "Hardy-Littlewood Type Gradient Estimates for Quasiminimizers." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 125-136. <http://eudml.org/doc/290667>.
@article{Kinnunen2010,
abstract = {We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.},
author = {Kinnunen, J., Kotilainen, M., Latvala, V.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {125-136},
publisher = {Unione Matematica Italiana},
title = {Hardy-Littlewood Type Gradient Estimates for Quasiminimizers},
url = {http://eudml.org/doc/290667},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Kinnunen, J.
AU - Kotilainen, M.
AU - Latvala, V.
TI - Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 125
EP - 136
AB - We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.
LA - eng
UR - http://eudml.org/doc/290667
ER -
References
top- ARAZY, J. - FISHER, S. D. - JANSON, S. - PEETRE, J., Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. Zbl0747.47019MR1113389DOI10.1112/jlms/s2-43.3.485
- BUCKLEY, S. M. - KOSKELA, P., Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. Zbl0812.35039MR1275460DOI10.1512/iumj.1994.43.43011
- DI BENEDETTO, E., local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. MR709038DOI10.1016/0362-546X(83)90061-5
- DI BENEDETTO, E. - TRUDINGER, N. S., Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. MR778976
- EVANS, L. C., A new proof of local regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. Zbl0508.35036MR672713DOI10.1016/0022-0396(82)90033-X
- ERIKSSON, S-L. - KOTILAINEN, M. - LATVALA, V., Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. Zbl1130.30018MR2350589DOI10.1007/s00006-007-0043-x
- FLETT, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. Zbl0246.30031MR304667DOI10.1016/0022-247X(72)90081-9
- GIAQUINTA, M. - MODICA, G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. Zbl0409.35015MR549962
- GIUSTI, E., Direct methods in the calculus of variations, World Scientific, 2003. Zbl1028.49001MR1962933DOI10.1142/9789812795557
- GRELLIER, S. - JAMING, P., Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. Zbl1051.43004MR2054532DOI10.1002/mana.200310159
- HEINONEN, J. - KILPELÄINEN, T. - MARTIO, O., Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. MR1207810
- HARDY, G. H. - LITTLEWOOD, J. E. - PÓLYA, G., Inequalities, University Press, Cambridge, 1978. MR197653
- KINNUNEN, J. - MARTIO, O., Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. Zbl1035.31007MR1996447
- LATVALA, V., BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. MR2097241
- LEWIS, J. L., Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. Zbl0554.35048MR721568DOI10.1512/iumj.1983.32.32058
- MALÝ, J. - ZIEMER, W. P., Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997. MR1461542DOI10.1090/surv/051
- STOLL, M., Invariant potential theory in the unit ball of . London Mathematical Society, Lecture Note Series199. Cambridge University Press, Cambridge, 1994. MR1297545DOI10.1017/CBO9780511526183
- STOLL, M., Dirichlet and Bergman spaces of holomorphic functions in the unit ball of , Monats. Math., 144 (2005), 131-139. Zbl1068.32005MR2123960DOI10.1007/s00605-004-0292-x
- ZIEMER, W. P., A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. Zbl0601.35034MR835882DOI10.2307/2046515
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.