A Remark on the Stability of the Determinant in Bidimensional Homogenization

Fernando Farroni; François Murat

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 209-215
  • ISSN: 0392-4041

Abstract

top
For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence A ϵ of matrices H-converges to A 0 (or in other terms if A ϵ converges to A 0 in the sense of homogenization) and if d e t A ϵ tends to c 0 a.e., then one has d e t A 0 = c 0 .

How to cite

top

Farroni, Fernando, and Murat, François. "A Remark on the Stability of the Determinant in Bidimensional Homogenization." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 209-215. <http://eudml.org/doc/290687>.

@article{Farroni2010,
abstract = {For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence $A^\{\epsilon\}$ of matrices H-converges to $A^\{0\}$ (or in other terms if $A^\{\epsilon\}$ converges to $A^\{0\}$ in the sense of homogenization) and if $det \, A^\{\epsilon\}$ tends to $c^\{0\}$ a.e., then one has $det \, A^\{0\} = c^\{0\}$.},
author = {Farroni, Fernando, Murat, François},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {209-215},
publisher = {Unione Matematica Italiana},
title = {A Remark on the Stability of the Determinant in Bidimensional Homogenization},
url = {http://eudml.org/doc/290687},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Farroni, Fernando
AU - Murat, François
TI - A Remark on the Stability of the Determinant in Bidimensional Homogenization
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 209
EP - 215
AB - For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence $A^{\epsilon}$ of matrices H-converges to $A^{0}$ (or in other terms if $A^{\epsilon}$ converges to $A^{0}$ in the sense of homogenization) and if $det \, A^{\epsilon}$ tends to $c^{0}$ a.e., then one has $det \, A^{0} = c^{0}$.
LA - eng
UR - http://eudml.org/doc/290687
ER -

References

top
  1. BOCCARDO, L. - MURAT, F., Homogénéisation de problèmes quasi-linéaires, in Atti del convegno: Studio di problemi-limite della analisi funzionale, Bressanone, settembre 1981, Pitagora, Bologna (1982), 13-51. 
  2. BRIANE, M. - MANCEAU, D. - MILTON, G. W., Homogenization of the two-dimensional Hall effect, J. Math. Anal. Appl., 339 , 2 (2008), 1468-1484. Zbl1206.78090MR2377101DOI10.1016/j.jmaa.2007.07.044
  3. DYKHNE, A. M., Conductivity of a two dimensional two-phase system, A. Nauk. SSSR, 59 (1970), 110-115. 
  4. FRANCFORT, G. A. - MURAT, F., Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media, in Nonclassical continuum mechanics (Durham, 1986), R. J. Knops and A. A. Lacey, eds., London Mathematical Society Lecture Notes Series122 (Cambridge University Press, Cambridge, 1987), 197-212. MR926503DOI10.1017/CBO9780511662911.013
  5. KELLER, J. B., A theorem on conductivity of composite medium, J. Mathematical Phys., 5, 4 (1964), 548-549. Zbl0129.44001MR161559DOI10.1063/1.1704146
  6. MARINO, A. - SPAGNOLO, S., Un tipo di approssimazione dell'operatore i , j = 1 n D i ( a i j ( x ) D j ) con operatori j = 1 n D j ( β ( x ) D j ) , Annali della Scuola Normale Superiore di Pisa23, 4 (1969), 657-673. MR278128
  7. MENDELSON, K. S., A theorem on the effective conductivity of a two-dimensional heterogeneous medium, J. of Applied Physics, 46 , 11 (1975), 4740-4741. 
  8. MILTON, G. W., The theory of composites, Cambridge Monographs in Applied and Computational Mathematics6 , Cambridge University Press (Cambridge, 2002). Zbl0993.74002MR1899805DOI10.1017/CBO9780511613357
  9. MURAT, F., H-convergence, Séminaire d'analyse fonctionnelle et numérique 1977-78, Université d'Alger. English translation: MURAT, F. - TARTAR, L., H-convergence, in Topics in the mathematical modelling of composite materials, A. Cherkaev - R. V. Kohn, eds., Progress in Nonlinear Differential Equations and their Applications, 31 (Birkhäuser, Boston, 1997), 21-43. MR1493039
  10. SBORDONE, C., Γ -convergence and G-convergence, Rend. Sem. Mat. Univ. Politec. Torino, 40 (1983), 25-51. MR724198
  11. SPAGNOLO, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Annali della Scuola Normale Superiore di Pisa, 22, 3 (1968), 571-597. MR240443
  12. TARTAR, L., The general theory of homogenization, A personalized introduction, Lecture Notes of the Unione Matematica Italiana, 7 (Springer-Verlag, Berlin, 2010). Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.