Remarks About Morphisms on an Algebraic Curve
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 505-519
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGuerra, Lucio. "Remarks About Morphisms on an Algebraic Curve." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 505-519. <http://eudml.org/doc/290697>.
@article{Guerra2010,
abstract = {In a previous paper we described the collection of homological equivalence relations on a curve of genus $\ge 2$ as the set of integral solutions of certain algebraic equations. In the present paper we improve one argument of the previous paper, and we study the equations more closely for a curve of genus 2.},
author = {Guerra, Lucio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {505-519},
publisher = {Unione Matematica Italiana},
title = {Remarks About Morphisms on an Algebraic Curve},
url = {http://eudml.org/doc/290697},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Guerra, Lucio
TI - Remarks About Morphisms on an Algebraic Curve
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 505
EP - 519
AB - In a previous paper we described the collection of homological equivalence relations on a curve of genus $\ge 2$ as the set of integral solutions of certain algebraic equations. In the present paper we improve one argument of the previous paper, and we study the equations more closely for a curve of genus 2.
LA - eng
UR - http://eudml.org/doc/290697
ER -
References
top- BIRKENHAKE, C. - LANGE, H., Complex Abelian Varieties, second edition. Springer-Verlag, Berlin, 2004. Zbl1056.14063MR2062673DOI10.1007/978-3-662-06307-1
- DICKSON, L., Introduction to the Theory of Numbers. Dover Publications, New York, 1957. Zbl0084.26901
- GUERRA, L., Morphisms on an algebraic curve and divisor classes in the self product. Boll. Unione Mat. Ital. Sez. B (8) 10, no. 3 (2007), 715-725. Zbl1139.14030MR2351541
- HAYASHIDA, T. - NISHI, M., Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Japan, 17 (1965), 1-16. Zbl0132.41701MR201434DOI10.2969/jmsj/01710001
- KANI, E., Bounds on the number of nonrational subfields of a function field. Invent. Math., 85 , no. 1 (1986), 185-198. Zbl0615.12017MR842053DOI10.1007/BF01388797
- KUHN, R., Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc., 307 , no. 1 (1988), 41-49. Zbl0692.14022MR936803DOI10.2307/2000749
- KUUSALO, T. - NÄÄTÄNEN, M., Geometric uniformization in genus 2. Ann. Acad. Sci. Fenn. Ser. A I Math., 20, no. 2 (1995), 401-418. Zbl0856.30031MR1346823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.