The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey

Patrizia Pucci; Vicenṭiu Rădulescu

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 543-582
  • ISSN: 0392-4041

Abstract

top
We provide a survey on the mountain pass theory, viewed as a central tool in the modern nonlinear analysis. The abstract results are illustrated with relevant applications to nonlinear partial differential equations.

How to cite

top

Pucci, Patrizia, and Rădulescu, Vicenṭiu. "The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 543-582. <http://eudml.org/doc/290701>.

@article{Pucci2010,
abstract = {We provide a survey on the mountain pass theory, viewed as a central tool in the modern nonlinear analysis. The abstract results are illustrated with relevant applications to nonlinear partial differential equations.},
author = {Pucci, Patrizia, Rădulescu, Vicenṭiu},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {543-582},
publisher = {Unione Matematica Italiana},
title = {The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey},
url = {http://eudml.org/doc/290701},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Pucci, Patrizia
AU - Rădulescu, Vicenṭiu
TI - The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 543
EP - 582
AB - We provide a survey on the mountain pass theory, viewed as a central tool in the modern nonlinear analysis. The abstract results are illustrated with relevant applications to nonlinear partial differential equations.
LA - eng
UR - http://eudml.org/doc/290701
ER -

References

top
  1. AMBROSETTI, A. - MALCHIODI, A., Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007. Zbl1125.47052MR2292344DOI10.1017/CBO9780511618260
  2. AMBROSETTI, A. - RABINOWITZ, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Zbl0273.49063MR370183
  3. BREZIS, H. - BROWDER, F., Partial differential equations in the 20th century, Adv. Math., 135 (1998), 76-144. Zbl0915.01011MR1617413DOI10.1006/aima.1997.1713
  4. BREZIS, H. - CORON, J.-M. - NIRENBERG, L., Free vibrations for a nonlinear wave equation and a theorem of Rabinowitz, Comm. Pure Appl. Math., 33 (1980), 667-689. Zbl0484.35057MR586417DOI10.1002/cpa.3160330507
  5. BREZIS, H. - NIRENBERG, L., Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-964. Zbl0751.58006MR1127041DOI10.1002/cpa.3160440808
  6. CERAMI, G., Un criterio di esistenza per i punti critici su varietà illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336. MR581298
  7. CHANG, K. C., Variational methods for non-differentiable functionals and applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. Zbl0487.49027MR614246DOI10.1016/0022-247X(81)90095-0
  8. CLARKE, F. H., Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247-262. Zbl0307.26012MR367131DOI10.2307/1997202
  9. CLARKE, F. H., Solution périodique des équations hamiltoniennes, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A951-A952. Zbl0422.35005MR520777
  10. CLARKE, F. H., Generalized gradients of Lipschitz functionals, Adv. in Math., 40 (1981), 52-67. Zbl0463.49017MR616160DOI10.1016/0001-8708(81)90032-3
  11. DUGUNDJI, J., Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1966. MR193606
  12. EKELAND, I., On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. Zbl0286.49015MR346619DOI10.1016/0022-247X(74)90025-0
  13. EKELAND, I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. Zbl0441.49011MR526967DOI10.1090/S0273-0979-1979-14595-6
  14. EMDEN, R., Die GaskuÈgeln, Teubner, Leipzig, 1907. 
  15. FOWLER, R. H., Further studies of Emden and similar differential equations, Quart. J. Math., 2 (1931), 259-288. Zbl57.0523.02
  16. GHERGU, M. - RĂDULESCU, V., Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University Press, 2008. MR2488149
  17. GHOUSSOUB, N. - PREISS, D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989), 321-330. Zbl0711.58008MR1030853
  18. JABRI, Y., The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Encyclopedia of Mathematics and its Applications, vol. 95, Cambridge University Press, Cambridge, 2003. Zbl1036.49001MR2012778DOI10.1017/CBO9780511546655
  19. KAZDAN, J. L. - WARNER, F. W., Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom., 10 (1975), 113-134. Zbl0296.53037MR365409
  20. KAZDAN, J. L. - WARNER, F. W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. Zbl0325.35038MR477445DOI10.1002/cpa.3160280502
  21. KRISTÁLY, A. - RĂDULESCU, V. - VARGA, CS., Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010. MR2683404DOI10.1017/CBO9780511760631
  22. LEBOURG, G., Valeur moyenne pour gradient generalisé, C. R. Acad. Sci. Paris, 281 (1975), 795-797. Zbl0317.46034MR388097
  23. LI, S., Some aspects of nonlinear operators and critical point theory, Functional analysis in China ( Li, Bingren, Eds.), Kluwer Academic Publishers, Dordrecht, 1996, 132-144. Zbl0847.58013MR1379601
  24. MAWHIN, J. - WILLEM, M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74, Springer, New York, 1989. Zbl0676.58017MR982267DOI10.1007/978-1-4757-2061-7
  25. PALAIS, R., Ljusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. Zbl0143.35203MR259955DOI10.1016/0040-9383(66)90013-9
  26. PALAIS, R. - SMALE, S., A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. MR158411DOI10.1090/S0002-9904-1964-11062-4
  27. POHOZAEV, S., On the eigenfunctions of the equation Δ u + λ f ( u ) = 0 , Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. MR192184
  28. PUCCI, P. - SERRIN, J., Extensions of the mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. Zbl0564.58012MR766489DOI10.1016/0022-1236(84)90072-7
  29. PUCCI, P. - SERRIN, J., A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. Zbl0585.58006MR808262DOI10.1016/0022-0396(85)90125-1
  30. PUCCI, P. - SERRIN, J., A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703. Zbl0625.35027MR855181DOI10.1512/iumj.1986.35.35036
  31. PUCCI, P. - SERRIN, J., The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc., 299 (1987), 115-132. Zbl0611.58019MR869402DOI10.2307/2000484
  32. PUCCI, P. - SERRIN, J., A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl., 79 (2000), 57-71. Zbl0952.35163MR1742565DOI10.1016/S0021-7824(99)00146-4
  33. PUCCI, P. - SERRIN, J., The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66; Erratum, J. Differential Equations, 207 (2004), 226-227. Zbl1109.35022MR2100819DOI10.1016/j.jde.2004.09.002
  34. PUCCI, P. - SERRIN, J., On the strong maximum and compact support principles and some applications, in Handbook of Differential Equations - Stationary Partial Differential Equations (M. Chipot, Ed.), Elsevier, Amsterdam, Vol. 4 (2007), 355-483. Zbl1193.35024MR2569337
  35. RABINOWITZ, P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conference Series in Mathematics, 65, 1986American Mathematical Society, Providence, RI. MR845785DOI10.1090/cbms/065
  36. RĂDULESCU, V., Mountain pass theorems for non-differentiable functions and applications, Proc. Japan Acad., 69A (1993), 193-198. MR1232824
  37. RELLICH, F., Darstellung der Eigenwerte von Δ u + λ u = 0 durch ein Randintegral, Math. Z., 46 (1940), 635-636. MR2456DOI10.1007/BF01181459
  38. RUDIN, W., Functional Analysis, Mc Graw-Hill, 1973. MR365062
  39. SCHECHTER, M., Minimax Systems and Critical Point Theory, Birkhäuser, Boston, 2009. Zbl1186.35043MR2512303DOI10.1007/978-0-8176-4902-9
  40. SERRIN, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302. Zbl0128.09101MR170096DOI10.1007/BF02391014
  41. STRUWE, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. MR1078018DOI10.1007/978-3-662-02624-3
  42. WILLEM, M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996. MR1400007DOI10.1007/978-1-4612-4146-1
  43. ZOU, W., Sign-changing Critical Point Theory, Springer, New York, 2008. Zbl1159.49010MR2442765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.