Density and Tangential Properties of the Graph of Hölder Functions
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 493-503
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBiacino, Loredana. "Density and Tangential Properties of the Graph of Hölder Functions." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 493-503. <http://eudml.org/doc/290703>.
@article{Biacino2010,
abstract = {In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.},
author = {Biacino, Loredana},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {493-503},
publisher = {Unione Matematica Italiana},
title = {Density and Tangential Properties of the Graph of Hölder Functions},
url = {http://eudml.org/doc/290703},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Biacino, Loredana
TI - Density and Tangential Properties of the Graph of Hölder Functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 493
EP - 503
AB - In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.
LA - eng
UR - http://eudml.org/doc/290703
ER -
References
top- BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Annalen, 98 (1927) 422-65. Zbl53.0175.04MR1512414DOI10.1007/BF01451603
- BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Annalen, 115 (1938) 296-329. Zbl0018.11302MR1513189DOI10.1007/BF01448943
- BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Annalen, 116 (1939) 349-57. Zbl65.0197.04MR1513231DOI10.1007/BF01597361
- BESICOVITCH, A. S., On tangents to general sets of points, Fundamenta Mathematicae, 22 (1934) 49-53. Zbl0008.24802
- BESICOVITCH, A. S. - URSELL, H. D., Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, Journal London Math. Soc., 12 (1937) 18-25. Zbl63.0184.04MR1574327DOI10.1112/jlms/s1-9.2.126
- BESICOVITCH, A. S., On the existence of tangents to rectifiable curves, Journal London Math. Soc., 19 (1945) 205-207. Zbl0061.37203MR14413DOI10.1112/jlms/19.76_Part_4.205
- BIACINO, L., Derivatives of fractional order of continuous functions, Ricerche Mat., LIII (2004) 231-254. Zbl1228.26011MR2286840
- BIACINO, L., Hausdorff dimension of the diagram of a-Hölder continuous functions, Ricerche Mat., LIV (2005) 229-243. MR2290217
- BIACINO, L., A note on the box dimension of the graph of a continuous function, submitted for publication. Zbl1187.28009MR2533920DOI10.1007/s12215-009-0025-z
- FALCONER, K. J., The geometry of fractal sets, Cambridge University Press, 1985. Zbl0587.28004MR867284
- FALCONER, K. J., Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons Ltd., New-York, 1990. MR1102677
- HEURTEAUX, Y., Weierstrass functions with random phases, Trans. Am. Math. Soc., 355, n. 8 (2003) 3065-3077. Zbl1031.26009MR1974675DOI10.1090/S0002-9947-03-03221-5
- MARTIN, M. A. - MATTILA, P., Hausdorff measures, Hölder continuous maps and self similar fractals, Math. Proc. Cambridge Philos. Soc., 114 (1993) 37-42. Zbl0783.28005MR1219912DOI10.1017/S0305004100071383
- MARSTRAND, J. M., Some fundamental geometrical properties of plane sets of fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302. Zbl0056.05504MR63439DOI10.1112/plms/s3-4.1.257
- MARSTRAND, J. M., Circular density of plane sets, Journal London Math. Soc., 30 (1954) 238-46. Zbl0064.05103MR67964DOI10.1112/jlms/s1-30.2.238
- MATTILA, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
- PREISS, D., Geometry of measures in : Distribution, rectifiability, and densities, Annals of Mathematics, 125 (1987) 537-643. Zbl0627.28008MR890162DOI10.2307/1971410
- PRZYTYCKI, F. - URBANSKI, M., On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186. Zbl0691.58029MR1002918DOI10.4064/sm-93-2-155-186
- TRICOT, C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982) 57-74. Zbl0483.28010MR633256DOI10.1017/S0305004100059119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.