Density and Tangential Properties of the Graph of Hölder Functions

Loredana Biacino

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 493-503
  • ISSN: 0392-4041

Abstract

top
In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.

How to cite

top

Biacino, Loredana. "Density and Tangential Properties of the Graph of Hölder Functions." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 493-503. <http://eudml.org/doc/290703>.

@article{Biacino2010,
abstract = {In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.},
author = {Biacino, Loredana},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {493-503},
publisher = {Unione Matematica Italiana},
title = {Density and Tangential Properties of the Graph of Hölder Functions},
url = {http://eudml.org/doc/290703},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Biacino, Loredana
TI - Density and Tangential Properties of the Graph of Hölder Functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 493
EP - 503
AB - In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.
LA - eng
UR - http://eudml.org/doc/290703
ER -

References

top
  1. BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Annalen, 98 (1927) 422-65. Zbl53.0175.04MR1512414DOI10.1007/BF01451603
  2. BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Annalen, 115 (1938) 296-329. Zbl0018.11302MR1513189DOI10.1007/BF01448943
  3. BESICOVITCH, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Annalen, 116 (1939) 349-57. Zbl65.0197.04MR1513231DOI10.1007/BF01597361
  4. BESICOVITCH, A. S., On tangents to general sets of points, Fundamenta Mathematicae, 22 (1934) 49-53. Zbl0008.24802
  5. BESICOVITCH, A. S. - URSELL, H. D., Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, Journal London Math. Soc., 12 (1937) 18-25. Zbl63.0184.04MR1574327DOI10.1112/jlms/s1-9.2.126
  6. BESICOVITCH, A. S., On the existence of tangents to rectifiable curves, Journal London Math. Soc., 19 (1945) 205-207. Zbl0061.37203MR14413DOI10.1112/jlms/19.76_Part_4.205
  7. BIACINO, L., Derivatives of fractional order of continuous functions, Ricerche Mat., LIII (2004) 231-254. Zbl1228.26011MR2286840
  8. BIACINO, L., Hausdorff dimension of the diagram of a-Hölder continuous functions, Ricerche Mat., LIV (2005) 229-243. MR2290217
  9. BIACINO, L., A note on the box dimension of the graph of a continuous function, submitted for publication. Zbl1187.28009MR2533920DOI10.1007/s12215-009-0025-z
  10. FALCONER, K. J., The geometry of fractal sets, Cambridge University Press, 1985. Zbl0587.28004MR867284
  11. FALCONER, K. J., Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons Ltd., New-York, 1990. MR1102677
  12. HEURTEAUX, Y., Weierstrass functions with random phases, Trans. Am. Math. Soc., 355, n. 8 (2003) 3065-3077. Zbl1031.26009MR1974675DOI10.1090/S0002-9947-03-03221-5
  13. MARTIN, M. A. - MATTILA, P., Hausdorff measures, Hölder continuous maps and self similar fractals, Math. Proc. Cambridge Philos. Soc., 114 (1993) 37-42. Zbl0783.28005MR1219912DOI10.1017/S0305004100071383
  14. MARSTRAND, J. M., Some fundamental geometrical properties of plane sets of fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302. Zbl0056.05504MR63439DOI10.1112/plms/s3-4.1.257
  15. MARSTRAND, J. M., Circular density of plane sets, Journal London Math. Soc., 30 (1954) 238-46. Zbl0064.05103MR67964DOI10.1112/jlms/s1-30.2.238
  16. MATTILA, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. Zbl0819.28004MR1333890DOI10.1017/CBO9780511623813
  17. PREISS, D., Geometry of measures in 𝐑 n : Distribution, rectifiability, and densities, Annals of Mathematics, 125 (1987) 537-643. Zbl0627.28008MR890162DOI10.2307/1971410
  18. PRZYTYCKI, F. - URBANSKI, M., On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186. Zbl0691.58029MR1002918DOI10.4064/sm-93-2-155-186
  19. TRICOT, C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982) 57-74. Zbl0483.28010MR633256DOI10.1017/S0305004100059119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.