Low-cost travels within the Solar system

Alessandra Celletti

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2014)

  • Volume: 7, Issue: 2, page 157-180
  • ISSN: 1972-7356

Abstract

top
Modern space mission designs are often based on merging advanced notions of Celestial Mechanics and Dynamical Systems theory. In particular, the special configurations known as collinear equilibrium points are used to compute low-energy orbits, which allow us to let the spacecraft travel along natural dynamical routes, without requiring too much fuel consumption (hence minimizing the total cost of the mission). The overall astrodynamical strategy comes over the centuries, thanks to the works of Euler, Lagrange and Conley. Nowadays, several space missions exploit the potentiality of the collinear points, allowing low-cost travels within the Solar system.

How to cite

top

Celletti, Alessandra. "Low-cost travels within the Solar system." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 7.2 (2014): 157-180. <http://eudml.org/doc/290707>.

@article{Celletti2014,
abstract = {Modern space mission designs are often based on merging advanced notions of Celestial Mechanics and Dynamical Systems theory. In particular, the special configurations known as collinear equilibrium points are used to compute low-energy orbits, which allow us to let the spacecraft travel along natural dynamical routes, without requiring too much fuel consumption (hence minimizing the total cost of the mission). The overall astrodynamical strategy comes over the centuries, thanks to the works of Euler, Lagrange and Conley. Nowadays, several space missions exploit the potentiality of the collinear points, allowing low-cost travels within the Solar system.},
author = {Celletti, Alessandra},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {157-180},
publisher = {Unione Matematica Italiana},
title = {Low-cost travels within the Solar system},
url = {http://eudml.org/doc/290707},
volume = {7},
year = {2014},
}

TY - JOUR
AU - Celletti, Alessandra
TI - Low-cost travels within the Solar system
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2014/8//
PB - Unione Matematica Italiana
VL - 7
IS - 2
SP - 157
EP - 180
AB - Modern space mission designs are often based on merging advanced notions of Celestial Mechanics and Dynamical Systems theory. In particular, the special configurations known as collinear equilibrium points are used to compute low-energy orbits, which allow us to let the spacecraft travel along natural dynamical routes, without requiring too much fuel consumption (hence minimizing the total cost of the mission). The overall astrodynamical strategy comes over the centuries, thanks to the works of Euler, Lagrange and Conley. Nowadays, several space missions exploit the potentiality of the collinear points, allowing low-cost travels within the Solar system.
LA - eng
UR - http://eudml.org/doc/290707
ER -

References

top
  1. BUCCIARELLI, S., CECCARONI, M., CELLETTI, A., PUCACCO, G., Qualitative and analytical results of the bifurcation thresholds to halo orbits, accepted for publication in Annali di Matematica Pura ed Applicata (2015). Zbl1344.70021MR3476685DOI10.1007/s10231-015-0474-2
  2. CELLETTI, A., Stability and Chaos in Celestial Mechanics, Springer-Verlag, Berlin; published in association with Praxis Publishing Ltd., Chichester, ISBN: 978-3-540-85145-5 (2010). Zbl1203.70001MR2571993DOI10.1007/978-3-540-85146-2
  3. CELLETTI, A., PUCACCO, G., STELLA, D., Lissajous and Halo orbits in the restricted three-body problem, accepted for publication in J. Nonlinear Science (2015). Zbl1344.70022MR3318799DOI10.1007/s00332-015-9232-2
  4. CONLEY, C.C., Low energy transit orbits in the restricted three-body problem, SIAM J. Appl. Math.16, n. 4, 732-746 (1968). Zbl0197.21105MR233535DOI10.1137/0116060
  5. CONLEY, C.C., On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits, J. Diff. Eq.5, 136-158 (1969). Zbl0169.11402MR251301DOI10.1016/0022-0396(69)90108-9
  6. CONLEY, C.C., Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics38, American Mathematical Society, Rhode Island (1978). Zbl0397.34056MR511133
  7. EULER, L., Considerationes de motu corporum coelestium. Novi commentarii academiae scientiarum Petropolitanae10, 544-558 (1764) (read at Berlin in 1762). See also: Opera Omnia, s. 2, 25, 246-257. 
  8. FARQUAR, R.W., The control and use of libration-point satellites, Ph.D. dissertation, Dept. of Aeronautics and Astronautics, Stanford University, Stanford CA, USA (1968). 
  9. FARQUAR, R.W., KAMEL, A.A., Quasi-periodic orbits about the translunar libration point, Cel. Mech.7, 458 (1973). Zbl0258.70011
  10. GÓMEZ, G., BARRABÉS, E., Space Manifold Dynamics, in ``Celestial Mechanics'', A. Celletti ed., EOLSS-UNESCO publ., ISBN 978-1-78021-519-8 (2015). 
  11. GÓMEZ, G., JORBA, À., MASDEMONT, J., SIMÓ, C., Study refinement of semi-analytical Halo orbit theory, ESOC Contract 8625/89/D/MD(SC), Final Report (1991). 
  12. GÓMEZ, G., MONDELO, J.M., The dynamics around the collinear equilibrium points of the RTBP, Physica D157, 283-321 (2001). Zbl0990.70009MR1862865DOI10.1016/S0167-2789(01)00312-8
  13. HENRARD, J., Periodic orbits emanating from a resonant equilibrium, Cel. Mech.1, 437- 466 (1970). Zbl0193.25302MR260240DOI10.1007/BF01231143
  14. HOHMANN, W., Die Erreichbarkeit der Himmelskörper, Verlag Oldenbourg, München (1925). 
  15. JORBA, À., MASDEMONT, J., Dynamics in the center manifold of the collinear points of the restricted three body problem, Physica D, 132, 189-213 (1999). Zbl0942.70012MR1705705DOI10.1016/S0167-2789(99)00042-1
  16. KEPLER, J., Astronomia nova seu physica coelestis tradita commentariis de motibus stellæ, Heidelberg, Voegelin (1609). 
  17. KOON, W.S., LO, M.W., MARSDEN, J.E., ROSS, S.D., Heteroclinic connections between periodic orbits and resonance transitions in Celestial Mechanics, Chaos10, n. 2, 427- 469 (2000). Zbl0987.70010MR1765636DOI10.1063/1.166509
  18. LAGRANGE, J.-L., Essai sur le problème des trois corps, Prix de l'Académie royale des sciences de Paris, tome IX (1772). 
  19. MOSER, J., On the generalization of a theorem by A. Liapounoff, Comm. Pure Appl. Math.XI, 257-271 (1958). Zbl0082.08003MR96021DOI10.1002/cpa.3160110208
  20. MURRAY, C.D., DERMOTT, S.F., Solar system dynamics, Cambridge University Press (1999). Zbl0957.70002MR1747818
  21. NASA/JPL Keplerian elements, available on http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt 
  22. RICHARDSON, D.L., Analytic construction of periodic orbits about the collinear points, Celestial Mechanics22, 241-253 (1980). Zbl0465.34028MR590496DOI10.1007/BF01229511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.