On an Equation From the Theory of Field Dislocation Mechanics

Amit Acharya; Luc Tartar

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 3, page 409-444
  • ISSN: 0392-4041

Abstract

top
Global existence and uniqueness results for a quasilinear system of partial differential equations in one space dimension and time representing the transport of dislocation density are obtained. Stationary solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time (in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like features and at the same time containing a large class of equilibria, our system differs qualitatively from regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure.

How to cite

top

Acharya, Amit, and Tartar, Luc. "On an Equation From the Theory of Field Dislocation Mechanics." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 409-444. <http://eudml.org/doc/290710>.

@article{Acharya2011,
abstract = {Global existence and uniqueness results for a quasilinear system of partial differential equations in one space dimension and time representing the transport of dislocation density are obtained. Stationary solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time (in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like features and at the same time containing a large class of equilibria, our system differs qualitatively from regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure.},
author = {Acharya, Amit, Tartar, Luc},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {409-444},
publisher = {Unione Matematica Italiana},
title = {On an Equation From the Theory of Field Dislocation Mechanics},
url = {http://eudml.org/doc/290710},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Acharya, Amit
AU - Tartar, Luc
TI - On an Equation From the Theory of Field Dislocation Mechanics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 409
EP - 444
AB - Global existence and uniqueness results for a quasilinear system of partial differential equations in one space dimension and time representing the transport of dislocation density are obtained. Stationary solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time (in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like features and at the same time containing a large class of equilibria, our system differs qualitatively from regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure.
LA - eng
UR - http://eudml.org/doc/290710
ER -

References

top
  1. ACHARYA, A., A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids, 49 (2001), 761-784. Zbl1017.74010
  2. ACHARYA, A., Driving forces and boundary conditions in continuum dislocation mechanics, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459, no. 2034 (2003), 1343-1363. Proceedings of the Royal Society. A, 459 (2003): 1343-1363. Zbl1041.74014MR1994263DOI10.1098/rspa.2002.1095
  3. ACHARYA, A., Constitutive analysis of finite deformation field dislocation mechanics. J. Mech. Phys. Solids, 52, no. 2 (2004), 301-316. Zbl1106.74315MR2033975DOI10.1016/S0022-5096(03)00093-0
  4. ACHARYA, A., New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale. J. Mech. Phys. Solids, 58, no. 5 (2010), 766- 778. Zbl1244.74026MR2642309DOI10.1016/j.jmps.2010.02.001
  5. ACHARYA, A., Microcanonical Entropy and mesoscale dislocation mechanics and plasticity. to appear in Journal of Elasticity. Zbl1320.74010MR2806903DOI10.1007/s10659-011-9328-3
  6. ACHARYA, A. - MATTHIES, K. - ZIMMER, J., Traveling wave solutions for a quasilinear model of field dislocation mechanics. J. Mech. Phys. Solids, 58 (2010), 2043-2053. Zbl1225.74012MR2757690DOI10.1016/j.jmps.2010.09.008
  7. ACHARYA, A. - ROY, A., Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. J. Mech. Phys. Solids, 54 (2006), 1687-1710. Zbl1120.74328MR2232335DOI10.1016/j.jmps.2006.01.009
  8. AGMON, S., Lectures on Elliptic Boundary Value Problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Revised edition of the 1965 original. AMSChelsea Publishing, Providence, RI, 2010. x+216 pp. ISBN: 978-0-8218-4910-1. MR2589244. Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London1965 v+291 pp. MR0178246 (31 #2504) MR178246
  9. BIRKHOFF, G., A Source Book in Classical Analysis, Edited by Garrett Birkhoff. With the assistance of Uta Merzbach. Harvard University Press, Cambridge, Mass., 1973. xii+470 pp. MR729933DOI10.1007/BF01194533
  10. DAFERMOS, C., Hyperbolic Conservation Laws in Continuum Physics. Third edition. Grundlehren der Mathematischen Wissenschaften, 325. Springer-Verlag, Berlin, 2010. xxxvi+708 pp. [Second edition. 2005. xx+626 pp. First edition. 2000. xvi+443 pp.]. Zbl1078.35001MR2574377DOI10.1007/978-3-642-04048-1
  11. FOX, N., A continuum theory of dislocations for single crystals. IMA Journal of Applied Mathematics, 2 (1966), 285-298. 
  12. KRÖNER, E., Continuum theory of defects. Physics of Defects, Les Houches Summer School (North-Holland, 1981), 217-315. 
  13. LIMKUMNERD, S. - SETHNA, J. P., Mesoscale theory of grains and cells: crystal plasticity and coarsening. Phys. Rev. Lett., (2006): 96, 095503. 
  14. LIMKUMNERD, S. - SETHNA, J. P., Shocks and slip systems: predictions from a mesoscale theory of continuum dislocation dynamics. J. Mech. Phys. Solids, 56, no. 4 (2008), 1450-1459. Zbl1171.74315MR2404020DOI10.1016/j.jmps.2007.08.008
  15. MURA, T., Continuous distribution of moving dislocations. Phil. Mag., 8 (1963), 843-857. 
  16. NABARRO, F. R. N., Theory of Crystal Dislocations, Dover Books on Physics and Chemistry, 1987, 821 pp. 
  17. POINCARÉ, H., Sur les équations aux dérivées partielles de la physique mathématique. Amer. J. Math., 12, no. 3 (1890), 211-294. Zbl22.0977.03MR1505534DOI10.2307/2369620
  18. POINCARÉ, H. , Sur les équations de la physique mathématique. Rend. Circ. Mat. Palermo, 8 (1894), 57-156. Zbl25.1526.01
  19. STAMPACCHIA, G., Équations Elliptiques du Second Ordre à Coefficients Discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965) Les Presses de l'Université de Montréal, Montreal, Que.1966 326 pp. MR192177
  20. TARTAR, L., Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1, no. 3 (1998), 479-500. Zbl0929.46028MR1662313
  21. TARTAR, L., Compensation effects in partial differential equations. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29, no. 1 (2005), 395-453. MR2305083
  22. TARTAR, L., An Introduction to Navier-Stokes Equation and Oceanography, Lecture Notes of the Unione Matematica Italiana, 1. Springer-Verlag, Berlin; UMI, Bologna, 2006. xxviii+245 pp. MR2258988DOI10.1007/3-540-36545-1
  23. TARTAR, L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 3. Springer, Berlin; UMI, Bologna, 2007. xxvi+218 pp. MR2328004
  24. TARTAR, L., From Hyperbolic Systems to Kinetic Theory: A Personalized Quest, Lecture Notes of the Unione Matematica Italiana, 6. Springer-Verlag, Berlin; UMI, Bologna, 2008. xxviii+279 pp. Zbl1147.35004MR2397052DOI10.1007/978-3-540-77562-1
  25. TARTAR, L., The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7. Springer-Verlag, Berlin; UMI, Bologna, 2009. xxii+470 pp. MR2582099DOI10.1007/978-3-642-05195-1
  26. WILLIS, J. R., Second-order effects of dislocations in anisotropic crystals. Internat. J. Engrg. Sci., 5 (1967): 171-190. Zbl0147.43506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.