A Paradox in the Two Envelope Paradox?
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 3, page 337-345
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVolčič, Aljoša. "A Paradox in the Two Envelope Paradox?." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 337-345. <http://eudml.org/doc/290711>.
@article{Volčič2011,
abstract = {. - We describe accurately the history of the two envelope paradox. We also formulate a new version of SchrÈodinger's paradox which reveals a close connection between the two sorts of paradoxes. Finally, we show that built into the most popular version of the two envelope paradox there is a logical paradox reminiscent of the unexpected hanging paradox.},
author = {Volčič, Aljoša},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {337-345},
publisher = {Unione Matematica Italiana},
title = {A Paradox in the Two Envelope Paradox?},
url = {http://eudml.org/doc/290711},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Volčič, Aljoša
TI - A Paradox in the Two Envelope Paradox?
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 337
EP - 345
AB - . - We describe accurately the history of the two envelope paradox. We also formulate a new version of SchrÈodinger's paradox which reveals a close connection between the two sorts of paradoxes. Finally, we show that built into the most popular version of the two envelope paradox there is a logical paradox reminiscent of the unexpected hanging paradox.
LA - eng
UR - http://eudml.org/doc/290711
ER -
References
top- BOLOBÁS, B., Littlewood's miscellany, Cambridge University Press, 1986. MR872858
- BLACKWELL, D., On the translation parameter problem for discrete variables, Ann. Math. Stat., 22 (1951), 391-399. Zbl0043.13802MR43418DOI10.1214/aoms/1177729585
- CHOW, T. Y., The Surprise Examination or Unexpected Hanging Paradox, Amer. Math. Monthly, 105, n. 1 (1998), 41-51. Zbl0917.03001MR1614002DOI10.2307/2589525
- EKELAND, I., Monty Hall and Probability, Π in the Sky, n. 10, January 2007, 10- 11.
- GARDNER, M., Aha! Gotcha, W. H. Freeman and Company, 1982. MR1132881
- KRAÏTCHIK, M., Mathematical recreations. George Allen Unwin ltd, London, 1943.
- LITTLEWOOD, J. E., A mathematician's Miscellany, London, Methuen Co., 1953. Zbl0051.00101MR3363433
- LINZER, E., The Two Envelope Paradox, Amer. Math. Monthly, 101, n. 5, (1994), 417-419. MR1272939DOI10.2307/2974901
- NALEBUFF, B., PUZZLES, Journal of Economic Perspectives, 2, n. 2 (Spring 1988), 171-181.
- PRODI, G., Il paradosso delle buste, Induzioni (1994), 33-63.
- QUINE, W. V. O., On a so-called paradox, Mind, 62 (1953), 65-?67.
- SZÉKELY, G. J., Paradoxes in probability theory and mathematical statistics, Reidel Publishing Company, 1986.
- SNELL, J. L. - VANDERBEI, R., Three bewitching paradoxes. In: J. L. Snell, (ed.) Topics in contemporary probability and its applications, 355-370. Bocca Raton, CRC Press, 1995. Zbl0867.60001MR1410543
- SAMET, D. - SAMET, I. - SCHMEIDLER, D., One observation behind Two Envelope Paradox, Amer. Math. Monthly, 111, n. 4 (2004), 347-351. Zbl1138.00302MR2057189DOI10.2307/4145244
- ZABELL, S.L., Loss and gain: the exchange paradox. In: J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith (ed.), Bayesian statistics 3. Proceedings of the third Valencia international meeting, 233-236. Clarendon Press, Oxford, 1988. MR1008039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.