Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces
Danilo Costarelli; Gianluca Vinti
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 3, page 445-468
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCostarelli, Danilo, and Vinti, Gianluca. "Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 445-468. <http://eudml.org/doc/290713>.
@article{Costarelli2011,
abstract = {In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces $L^\varphi(\mathbb\{R\}^n)$ that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in $L^p(\mathbb\{R\}^n)$- spaces, $L^\alpha\log^\beta L(\mathbb\{R\}^n)$-spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.},
author = {Costarelli, Danilo, Vinti, Gianluca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {445-468},
publisher = {Unione Matematica Italiana},
title = {Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces},
url = {http://eudml.org/doc/290713},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Costarelli, Danilo
AU - Vinti, Gianluca
TI - Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 445
EP - 468
AB - In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces $L^\varphi(\mathbb{R}^n)$ that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in $L^p(\mathbb{R}^n)$- spaces, $L^\alpha\log^\beta L(\mathbb{R}^n)$-spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.
LA - eng
UR - http://eudml.org/doc/290713
ER -
References
top- BARDARO, C. - BUTZER, P. L. - STENS, R. L. - VINTI, G., Kantorovich-Type Generalized Sampling Series in the Setting of Orlicz Spaces, Sampling Theory in Signal and Image Processing, 6, No. 1 (2007), 29-52. Zbl1156.41307MR2296881
- BARDARO, C. - MANTELLINI, I., Modular Approximation by Sequences of Nonlinear Integral Operators in Musielak-Orlicz Spaces, Atti Sem. Mat. Fis. Univ. Modena, special issue dedicated to Professor Calogero Vinti, suppl., vol. 46, (1998), 403-425. MR1645731
- BARDARO, C. - MUSIELAK, J. - VINTI, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 9, 2003. MR1994699DOI10.1515/9783110199277
- BARDARO, C. - VINTI, G., Modular convergence in generalized Orlicz spaces for moment type operators, Applicable Analysis, 32 (1989), 265-276. Zbl0668.42009MR1030099DOI10.1080/00036818908839853
- BARDARO, C. - VINTI, G., A general approach to the convergence theorems of generalized sampling series, Applicable Analysis, 64 (1997), 203-217. Zbl0878.47016MR1460079DOI10.1080/00036819708840531
- BARDARO, C. - VINTI, G., An Abstract Approach to Sampling Type Operators Inspired by the Work of P. L. Butzer - Part I - Linear Operators, Sampling Theory in Signal and Image Processing, 2 (3) (2003), 271-296. Zbl1137.41334MR2090110
- BEZUGLAYA, L. - KATSNELSON, V., The sampling theorem for functions with limited multi-band spectrum I, Zeitschrift für Analysis und ihre Anwendungen, 12 (1993), 511-534. Zbl0786.30019MR1245936DOI10.4171/ZAA/550
- BUTZER, P. L., A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. Zbl0523.94003MR724869
- BUTZER, P. L. - ENGELS, W. - RIES, S. - STENS, R. L., The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines, SIAM J. Appl. Math., 46 (1986), 299-323. Zbl0617.41020MR833479DOI10.1137/0146020
- BUTZER, P. L. - FISHER, A. - STENS, R. L., Generalized sampling approximation of multivariate signals: theory and applications, Note di Matematica, 10, Suppl. n. 1 (1990), 173-191. Zbl0768.42013MR1193522
- BUTZER, P. L. - HINSEN, G., Reconstruction of bounded signal from pseudo-periodic, irregularly spaced samples, Signal Processing, 17 (1989), 1-17. MR995998DOI10.1016/0165-1684(89)90068-6
- BUTZER, P. L. - NESSEL, R. J., Fourier Analysis and Approximation, I, Academic Press, New York-London, 1971. Zbl0217.42603MR510857
- BUTZER, P. L. - RIES, S. - STENS, R. L., Shannon's sampling theorem, Cauchy's integral formula, and related results, In: Anniversary Volume on Approximation Theory and Functional Analysis, (Proc. Conf., Math. Res. Inst. Oberwolfach, Black Forest, July 30-August 6, 1983), P. L. Butzer, R. L. Stens and B. Sz.-Nagy (Eds.), Internat. Schriftenreihe Numer. Math., 65, Birkhäuser, Basel, 1984, 363-377. MR820537
- BUTZER, P. L. - RIES, S. - STENS, R. L., Approximation of continuous and discountinuous functions by generalized sampling series, J. Approx. Theory, 50 (1987), 25-39. Zbl0654.41004MR888050DOI10.1016/0021-9045(87)90063-3
- BUTZER, P. L. - SPLETTSTOßER, W. - STENS, R. L., The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein, 90 (1988), 1-70. Zbl0633.94002MR928745
- BUTZER, P. L. - STENS, R. L., Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Review, 34 (1) (1992), 40-53. Zbl0746.94002MR1156288DOI10.1137/1034002
- BUTZER, P. L. - STENS, R. L., Linear prediction by samples from the past, Advanced Topics in Shannon Sampling and Interpolation Theory, (editor R. J. Marks II), Springer-Verlag, New York, 1993. MR1221748
- DODSON, M. M. - SILVA, A. M., Fourier Analysis and the Sampling Theorem, Proc. Ir. Acad., 86, A (1985), 81-108. Zbl0583.42003MR821425
- FOLLAND, G. B., Real Analysis: Modern techniques and their applications, Wiley and Sons, 1984. Zbl0549.28001MR767633
- HIGGINS, J. R., Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. Zbl0562.42002MR766960DOI10.1090/S0273-0979-1985-15293-0
- HIGGINS, J. R., Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford Univ. Press, Oxford, 1996. Zbl0872.94010
- J. R. HIGGINS - R. L. STENS (Eds.), Sampling Theory in Fourier and Signal Analysis: advanced topics, Oxford Science Publications, Oxford Univ. Press, Oxford, 1999.
- JERRY, A. J., The Shannon sampling-its various extensions and applications: a tutorial review, Proc. IEEE, 65 (1977), 1565-1596.
- KOZLOWSKI, W. M., Modular Function Spaces, (Pure Appl. Math.) Marcel Dekker, New York and Basel, 1988. Zbl0661.46023MR1474499
- KRASNOSEL'SKǏI, M. A. - RUTICKǏI, YA. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. - Groningen - The Netherlands, 1961. MR126722
- MALIGRANDA, L., Orlicz Spaces and Interpolation, Seminarios de Matematica, IMECC, Campinas, 1989. Zbl0874.46022MR2264389
- MANTELLINI, I. - VINTI, G., Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81 (1) (2003), 55-71. Zbl1019.41013MR1977761DOI10.4064/ap81-1-5
- MUSIELAK, J., Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
- MUSIELAK, J. - ORLICZ, W., On modular spaces, Studia Math., 28 (1959), 49-65. Zbl0086.08901MR101487DOI10.4064/sm-18-1-49-65
- RAO, M. M. - REN, Z. D., Theory of Orlicz Spaces, Pure and Appl. Math., Marcel Dekker Inc. New York-Basel-Hong Kong, 1991. MR1113700
- RAO, M. M. - REN, Z. D., Applications of Orlicz Spaces, Monographs and Textbooks in Pure and applied Mathematics, vol. 250, Marcel Dekker Inc., New York, 2002. Zbl0997.46027MR1890178DOI10.1201/9780203910863
- RIES, S. - STENS, R. L., Approximation by generalized sampling series, Constructive Theory of Functions '84, Sofia (1984), 746-756.
- SHANNON, C. E., Communication in the presence of noise, Proc. I.R.E., 37 (1949), 10-21. MR28549
- VINTI, C., A Survey on Recent Results of the Mathematical Seminar in Perugia, inspired by the Work of Professor P. L. Butzer, Result. Math., 34 (1998), 32-55. Zbl1010.01021MR1635582DOI10.1007/BF03322036
- VINTI, G., Approximation in Orlicz spaces for linear integral operators and applications, Rendiconti del Circolo Matematico di Palermo, Serie II, N. 76 (2005), 103-127. Zbl1136.41306MR2175550
- VINTI, G. - ZAMPOGNI, L., A Unifying Approach to Convergence of Linear Sampling Type Operators in Orlicz Spaces, Advances in Differential Equations, Vol. 16, Numbers 5-6 (2011), 573-600. Zbl1223.41014MR2816117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.