Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces

Danilo Costarelli; Gianluca Vinti

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 3, page 445-468
  • ISSN: 0392-4041

Abstract

top
In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces L φ ( n ) that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in L p ( n ) - spaces, L α log β L ( n ) -spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.

How to cite

top

Costarelli, Danilo, and Vinti, Gianluca. "Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 445-468. <http://eudml.org/doc/290713>.

@article{Costarelli2011,
abstract = {In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces $L^\varphi(\mathbb\{R\}^n)$ that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in $L^p(\mathbb\{R\}^n)$- spaces, $L^\alpha\log^\beta L(\mathbb\{R\}^n)$-spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.},
author = {Costarelli, Danilo, Vinti, Gianluca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {445-468},
publisher = {Unione Matematica Italiana},
title = {Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces},
url = {http://eudml.org/doc/290713},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Costarelli, Danilo
AU - Vinti, Gianluca
TI - Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 445
EP - 468
AB - In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces $L^\varphi(\mathbb{R}^n)$ that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in $L^p(\mathbb{R}^n)$- spaces, $L^\alpha\log^\beta L(\mathbb{R}^n)$-spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.
LA - eng
UR - http://eudml.org/doc/290713
ER -

References

top
  1. BARDARO, C. - BUTZER, P. L. - STENS, R. L. - VINTI, G., Kantorovich-Type Generalized Sampling Series in the Setting of Orlicz Spaces, Sampling Theory in Signal and Image Processing, 6, No. 1 (2007), 29-52. Zbl1156.41307MR2296881
  2. BARDARO, C. - MANTELLINI, I., Modular Approximation by Sequences of Nonlinear Integral Operators in Musielak-Orlicz Spaces, Atti Sem. Mat. Fis. Univ. Modena, special issue dedicated to Professor Calogero Vinti, suppl., vol. 46, (1998), 403-425. MR1645731
  3. BARDARO, C. - MUSIELAK, J. - VINTI, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 9, 2003. MR1994699DOI10.1515/9783110199277
  4. BARDARO, C. - VINTI, G., Modular convergence in generalized Orlicz spaces for moment type operators, Applicable Analysis, 32 (1989), 265-276. Zbl0668.42009MR1030099DOI10.1080/00036818908839853
  5. BARDARO, C. - VINTI, G., A general approach to the convergence theorems of generalized sampling series, Applicable Analysis, 64 (1997), 203-217. Zbl0878.47016MR1460079DOI10.1080/00036819708840531
  6. BARDARO, C. - VINTI, G., An Abstract Approach to Sampling Type Operators Inspired by the Work of P. L. Butzer - Part I - Linear Operators, Sampling Theory in Signal and Image Processing, 2 (3) (2003), 271-296. Zbl1137.41334MR2090110
  7. BEZUGLAYA, L. - KATSNELSON, V., The sampling theorem for functions with limited multi-band spectrum I, Zeitschrift für Analysis und ihre Anwendungen, 12 (1993), 511-534. Zbl0786.30019MR1245936DOI10.4171/ZAA/550
  8. BUTZER, P. L., A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. Zbl0523.94003MR724869
  9. BUTZER, P. L. - ENGELS, W. - RIES, S. - STENS, R. L., The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines, SIAM J. Appl. Math., 46 (1986), 299-323. Zbl0617.41020MR833479DOI10.1137/0146020
  10. BUTZER, P. L. - FISHER, A. - STENS, R. L., Generalized sampling approximation of multivariate signals: theory and applications, Note di Matematica, 10, Suppl. n. 1 (1990), 173-191. Zbl0768.42013MR1193522
  11. BUTZER, P. L. - HINSEN, G., Reconstruction of bounded signal from pseudo-periodic, irregularly spaced samples, Signal Processing, 17 (1989), 1-17. MR995998DOI10.1016/0165-1684(89)90068-6
  12. BUTZER, P. L. - NESSEL, R. J., Fourier Analysis and Approximation, I, Academic Press, New York-London, 1971. Zbl0217.42603MR510857
  13. BUTZER, P. L. - RIES, S. - STENS, R. L., Shannon's sampling theorem, Cauchy's integral formula, and related results, In: Anniversary Volume on Approximation Theory and Functional Analysis, (Proc. Conf., Math. Res. Inst. Oberwolfach, Black Forest, July 30-August 6, 1983), P. L. Butzer, R. L. Stens and B. Sz.-Nagy (Eds.), Internat. Schriftenreihe Numer. Math., 65, Birkhäuser, Basel, 1984, 363-377. MR820537
  14. BUTZER, P. L. - RIES, S. - STENS, R. L., Approximation of continuous and discountinuous functions by generalized sampling series, J. Approx. Theory, 50 (1987), 25-39. Zbl0654.41004MR888050DOI10.1016/0021-9045(87)90063-3
  15. BUTZER, P. L. - SPLETTSTOßER, W. - STENS, R. L., The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein, 90 (1988), 1-70. Zbl0633.94002MR928745
  16. BUTZER, P. L. - STENS, R. L., Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Review, 34 (1) (1992), 40-53. Zbl0746.94002MR1156288DOI10.1137/1034002
  17. BUTZER, P. L. - STENS, R. L., Linear prediction by samples from the past, Advanced Topics in Shannon Sampling and Interpolation Theory, (editor R. J. Marks II), Springer-Verlag, New York, 1993. MR1221748
  18. DODSON, M. M. - SILVA, A. M., Fourier Analysis and the Sampling Theorem, Proc. Ir. Acad., 86, A (1985), 81-108. Zbl0583.42003MR821425
  19. FOLLAND, G. B., Real Analysis: Modern techniques and their applications, Wiley and Sons, 1984. Zbl0549.28001MR767633
  20. HIGGINS, J. R., Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. Zbl0562.42002MR766960DOI10.1090/S0273-0979-1985-15293-0
  21. HIGGINS, J. R., Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford Univ. Press, Oxford, 1996. Zbl0872.94010
  22. J. R. HIGGINS - R. L. STENS (Eds.), Sampling Theory in Fourier and Signal Analysis: advanced topics, Oxford Science Publications, Oxford Univ. Press, Oxford, 1999. 
  23. JERRY, A. J., The Shannon sampling-its various extensions and applications: a tutorial review, Proc. IEEE, 65 (1977), 1565-1596. 
  24. KOZLOWSKI, W. M., Modular Function Spaces, (Pure Appl. Math.) Marcel Dekker, New York and Basel, 1988. Zbl0661.46023MR1474499
  25. KRASNOSEL'SKǏI, M. A. - RUTICKǏI, YA. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. - Groningen - The Netherlands, 1961. MR126722
  26. MALIGRANDA, L., Orlicz Spaces and Interpolation, Seminarios de Matematica, IMECC, Campinas, 1989. Zbl0874.46022MR2264389
  27. MANTELLINI, I. - VINTI, G., Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81 (1) (2003), 55-71. Zbl1019.41013MR1977761DOI10.4064/ap81-1-5
  28. MUSIELAK, J., Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
  29. MUSIELAK, J. - ORLICZ, W., On modular spaces, Studia Math., 28 (1959), 49-65. Zbl0086.08901MR101487DOI10.4064/sm-18-1-49-65
  30. RAO, M. M. - REN, Z. D., Theory of Orlicz Spaces, Pure and Appl. Math., Marcel Dekker Inc. New York-Basel-Hong Kong, 1991. MR1113700
  31. RAO, M. M. - REN, Z. D., Applications of Orlicz Spaces, Monographs and Textbooks in Pure and applied Mathematics, vol. 250, Marcel Dekker Inc., New York, 2002. Zbl0997.46027MR1890178DOI10.1201/9780203910863
  32. RIES, S. - STENS, R. L., Approximation by generalized sampling series, Constructive Theory of Functions '84, Sofia (1984), 746-756. 
  33. SHANNON, C. E., Communication in the presence of noise, Proc. I.R.E., 37 (1949), 10-21. MR28549
  34. VINTI, C., A Survey on Recent Results of the Mathematical Seminar in Perugia, inspired by the Work of Professor P. L. Butzer, Result. Math., 34 (1998), 32-55. Zbl1010.01021MR1635582DOI10.1007/BF03322036
  35. VINTI, G., Approximation in Orlicz spaces for linear integral operators and applications, Rendiconti del Circolo Matematico di Palermo, Serie II, N. 76 (2005), 103-127. Zbl1136.41306MR2175550
  36. VINTI, G. - ZAMPOGNI, L., A Unifying Approach to Convergence of Linear Sampling Type Operators in Orlicz Spaces, Advances in Differential Equations, Vol. 16, Numbers 5-6 (2011), 573-600. Zbl1223.41014MR2816117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.