Sull'applicabilità della matematica

Daniele Molinini; Marco Panza

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2014)

  • Volume: 7, Issue: 3, page 367-395
  • ISSN: 1972-7356

How to cite

top

Molinini, Daniele, and Panza, Marco. "Sull'applicabilità della matematica ." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 7.3 (2014): 367-395. <http://eudml.org/doc/290729>.

@article{Molinini2014,
author = {Molinini, Daniele, Panza, Marco},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {367-395},
publisher = {Unione Matematica Italiana},
title = {Sull'applicabilità della matematica },
url = {http://eudml.org/doc/290729},
volume = {7},
year = {2014},
}

TY - JOUR
AU - Molinini, Daniele
AU - Panza, Marco
TI - Sull'applicabilità della matematica
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2014/12//
PB - Unione Matematica Italiana
VL - 7
IS - 3
SP - 367
EP - 395
LA - ita
UR - http://eudml.org/doc/290729
ER -

References

top
  1. AYER, A. J. (1936), Language, truth, and logic, Victor Gollancz, London (trad. it. Linguaggio, verità e logica, Feltrinelli, Milano, 1961). 
  2. AZZOUNI, J. (2000), `Applying mathematics: An attempt to design a philosophical problem', The Monist, vol. 83, pp. 209-27. 
  3. BANGU, S. (2012), The applicability of mathematics in science: Indispensability and ontology, Palgrave Macmillan, London. 
  4. BATTERMAN, R. (2010), `On the explanatory role of mathematics in empirical science', British Journal for the Philosophy of Science, vol. 61, pp. 1-25. Zbl1202.00025MR2601680DOI10.1093/bjps/axp018
  5. BENACERRAF, P. (1973) `Mathematical truth', Journal of Philosophy, vol. 70, pp. 661-80. MR485124DOI10.2307/2025075
  6. BUENO, O. e COLYVAN, M. (2011), `An inferential conception of the application of mathematics', Noûs, vol. 45, pp. 345-74. Zbl1366.00022MR2828665DOI10.1111/j.1468-0068.2010.00772.x
  7. CARNAP, R. (1930), `Die Mathematik als Zweig der Logik', Blätter für Deutsche Philosophie, vol. 4, pp. 298-310. Zbl56.0043.08
  8. COLYVAN, M. (2001), `The miracle of applied mathematics', Synthese, vol. 127, pp. 265-77. Zbl0977.00006MR1844678DOI10.1023/A:1010309227321
  9. COLYVAN, M. (2012), An introduction to the philosophy of mathematics, Cambridge University Press, Cambridge. Zbl1255.00003MR2985901DOI10.1017/CBO9781139033107
  10. DAVIES, P. C. W. (1992), The mind of God, Penguin Book, London (trad. it. La mente di Dio, Mondadori, Milano, 1996) 
  11. DORATO, M. (2000), `Substantivalism, relationism and structural spacetime realism', Foundations of Physics, vol. 30, pp. 1605-28. MR1810191DOI10.1023/A:1026442015519
  12. DYSON, F. J. (1964), `Mathematics in the physical sciences', Scientific American, vol. 211, pp. 128-146. MR164855DOI10.1038/scientificamerican0964-128
  13. DUMMETT, M. (1991), Frege: Philosophy of mathematics, Harvard University Press, Cambridge (MA). MR1260677
  14. FEYNMAN, R. P. (1967), The character of physical law, MIT Press, Cambridge (MA) (trad. it. La legge fisica, Bollati Boringhieri, Torino, 1971). 
  15. FIELD, H. (1980), Science without numbers: A defence of nominalism, Blackwell, Oxford. Zbl0454.00015MR591456
  16. FIELD, H. (1982), `Realism and anti-realism about mathematics', Philosophical Topics, vol. 13, pp. 45-69; anche in Field, H., Realism, mathematics and modality, Blackwell, Oxford, 1989, pp. 53-78. MR1085718
  17. FREGE, G. (1884), Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl, Koebner, Breslau (trad. it. I fondamenti dell'aritmetica. Un'indagine logico-matematica sul concetto di numero, in Frege, G., Logica e aritmetica, a cura di C. Mangione, Boringhieri, Torino, 1965). MR197272
  18. FREGE, G. (1893-1903), Grundgesetze der Arithmetik, 2 Voll., Pohle, Jena (trad. it parziale, I principi dell'aritmetica, in Frege, G., Logica e aritmentica, a cura di C. Mangione, Boringhieri, Torino, 1965). MR197272
  19. FRENCH, S. (2000), `The reasonable effectiveness of mathematics: partial structures and the application of group theory to physics', Synthese, vol. 125, pp. 103-20. Zbl1007.81005MR1801017DOI10.1023/A:1005246608001
  20. FRENCH, S. (2014), The Structure of the world: Metaphysics and representation, Oxford University Press, Oxford. 
  21. FRENCH, S., BUENO, O. e LADYMAN, J. (2002), `On representing the relationship between the mathematical and the empirical', Philosophy of Science, vol. 69, pp. 452-73. MR1933400DOI10.1086/342452
  22. FRENCH,. S. e LADYMAN, J. (2011), `In defence of ontic structural realism', in A. Bokulich e P. Bokulich (a cura di), Scientific structuralism, Springer, Berlin, pp. 25-42. MR2001906DOI10.1023/A:1024180822088
  23. GALILEI, GALILEO, Le opere di Galileo Galilei: edizione nazionale sotto gli auspici di sua maestà il re d'Italia, a cura di A. Favaro, 20 voll., Barbera, Firenze, 1890-1909. Zbl30.0005.01
  24. GINGRAS, Y. (2001), `What did mathematics do to physics?', History of Science, vol. 39, pp. 383-416. MR1877685DOI10.1177/007327530103900401
  25. HAHN, H. (1929), `Empirismus, Mathematik, Logik', Forschungen und Fortschritte, Vol. 5. 
  26. HILBERT, D. (1992), Natur und mathematisches Erkennen: Vorlesungen, gehalten 1919-1920 in Göttingen, a cura di D.E. Rowe, Birkhäuser, Basel. Zbl0741.01030MR1316394
  27. ISRAEL, G. (1996), La visione matematica della realtà, Laterza, Roma-Bari. 
  28. ISRAEL, G. (2002), `The two faces of mathematical modeling: Objectivism vs subjectivism, simplicity vs complexity', in P. Cerrai, P. Freguglia e P. Pellegrini (a cura di), The application of mathematics to the sciences of nature. Critical moments and aspects, Kluwer, New York, pp. 233-243. Zbl1253.00007MR2057630
  29. KRANTZ, D. H., LUCE, R. D., SUPPES, P. e TVERSKY, A. (1971-1990), Foundations of measurement, 3 voll., Academic Press, New York. Zbl0232.02040MR459067
  30. LADYMAN, J. (1998), `What is structural realism?', Studies in history and philosophy of science, vol. 29, pp. 409-24. 
  31. MADDY, P. (1997), Naturalism in mathematics, Oxford University Press, Oxford. Zbl0931.03003MR1699270
  32. MALAMENT, D. (1982), `Review of Field's Science without numbers', Journal of Philosophy, vol. 79, pp. 523-34. 
  33. MOLININI, D. (2014), Che cos'è una spiegazione matematica, Carocci, Roma. 
  34. NAPOLETANI, D., PANZA, M. e STRUPPA, D. (2011), `Agnostic science. Towards a philosophy of data analysis', Foundations of Science, vol. 16, pp. 1-20. Zbl1213.00034MR2764463DOI10.1007/s10699-010-9186-7
  35. NAPOLETANI, D., PANZA, M. e STRUPPA, D. (2014), `Is big data enough? A reflection on the changing role of mathematics in applications', Notices of the American Mathematical Society, vol. 61, pp. 485-90. Zbl1338.00043MR3203239DOI10.1090/noti1102
  36. PANZA, M. (2002), `Mathematization of the science of motion and the birth of analytical mechanics: A historiographical note', in P. Cerrai, P. Freguglia e P. Pellegrini (a cura di), The application of mathematics to the sciences of nature. Critical moments and aspects, Kluwer, New York, pp. 253-71. Zbl1253.01048MR2057631
  37. PANZA, M. e SERENI, A. (2010), Il Problema di Platone, Carocci, Roma (ed. inglese aggiornata, Plato's problem. An introduction to mathematical platonism, Palgrave Macmillan, Basingstoke, 2013). Zbl1277.00026MR3115057DOI10.1057/9781137298133
  38. PENROSE, R. (1989), The emperor's new mind: Concerning computers, mind,and the laws of physics, Oxford University Press, Oxford (trad. it. La nuova mente dell'imperatore, Rizzoli, Milano, 1992). Zbl0749.00009MR1048125
  39. PINCOCK, C. (2004), `A new perspective on the problem of applying mathematics', Philosophia Mathematica, vol. 3, pp. 135-61. Zbl1062.00003MR2061714DOI10.1093/philmat/12.2.135
  40. PINCOCK, C. (2007a), `A role for mathematics in the physical sciences', Noûs, vol. 41, pp. 253-75. Zbl1366.00037MR2321070DOI10.1111/j.1468-0068.2007.00646.x
  41. PINCOCK, C. (2007b), `Mathematical idealization', Philosophy of Science, vol. 74, pp. 957-67. MR2444977DOI10.1086/525636
  42. PINCOCK, C. (2012), Mathematics and scientific representation, Oxford University Press, Oxford. Zbl1257.00007MR2594387DOI10.1093/philmat/nkp020
  43. PINCOCK, C. (2014), `How to avoid inconsistent idealizations', Synthese, vol. 191, pp. 2957-72. MR3240318DOI10.1007/s11229-014-0474-6
  44. RIZZA, D. (2013), `The applicability of mathematics: Beyond mapping accounts', Philosophy of Science, vol. 80, pp. 398-412. MR3113118DOI10.1086/670295
  45. SHABEL, L. (2005), `Apriority and application: Philosophy of mathematics in the modern period', in S. Shapiro (a cura di), The Oxford handbook of philosophy of mathematics and logic, Oxford University Press, Oxford, pp. 29-50. MR2118373DOI10.1093/0195148770.001.0001
  46. SHAPIRO, S. (1983), `Mathematics and reality', Philosophy of Science, vol. 50, 523-48. Zbl1223.00005MR732070DOI10.1086/289138
  47. STEINER, M. (1989), `The application of mathematics to natural science', Journal of Philosophy, vol. 86, pp. 449-480. MR1032469DOI10.2307/2026759
  48. STEINER, M. (1992), `Mathematical rigor in physics', in Detlefsen, M. (a cura di), Proof and knowledge in mathematics, Routledge, New York, pp. 158-70. MR1298021
  49. STEINER, M. (1998), The applicability of mathematics as a philosophical problem, Harvard University Press, Cambridge (MA). Zbl0945.00003MR1678125
  50. STEINER, M. (2005), `Mathematics - application and applicability', in S. Shapiro (a cura di), The Oxford handbook of philosophy of mathematics and logic, Oxford University Press, Oxford, pp. 625-50. MR2118373DOI10.1093/0195148770.001.0001
  51. URQUHART, A. (2008), `Mathematics and physics: Strategies of assimilation', in P. Mancosu (a cura di), The philosophy of mathematical practice, Oxford University Press, Oxford, pp. 417-40. MR2590934DOI10.1093/acprof:oso/9780199296453.001.0001
  52. WIGNER, E. P. (1960), `The unreasonable effectiveness of mathematics in the natural sciences', Communications on Pure and Applied Mathematics, vol. 13, pp. 1-14. Zbl0102.00703MR824292
  53. WILSON, M. (2000), `The unreasonable uncooperativeness of mathematics in the natural sciences', The Monist, vol. 83, pp. 296-315. 
  54. WILHOLT, T. (2006), `Lost in the way from Frege to Carnap: How the philosophy of science forgot the applicability problem', Grazer Philosophische Studien, vol. 73, pp. 69-82. 
  55. WORRALL, J. (1989), `Structural realism: The best of both worlds?', Dialectica, vol. 43, pp. 99-124. 
  56. WRIGHT, C. (2000) `Neo-Fregean foundation for real analysis: Some reflection on Frege's constraint', Notre Dame Journal of Formal Logic, vol. 41, pp. 317-34. Zbl1014.03012MR1963485DOI10.1305/ndjfl/1038336879

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.