Dagli insiemi alle categorie

Giuseppe Rosolini

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2014)

  • Volume: 7, Issue: 3, page 461-480
  • ISSN: 1972-7356

How to cite

top

Rosolini, Giuseppe. "Dagli insiemi alle categorie." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 7.3 (2014): 461-480. <http://eudml.org/doc/290746>.

@article{Rosolini2014,
author = {Rosolini, Giuseppe},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {461-480},
publisher = {Unione Matematica Italiana},
title = {Dagli insiemi alle categorie},
url = {http://eudml.org/doc/290746},
volume = {7},
year = {2014},
}

TY - JOUR
AU - Rosolini, Giuseppe
TI - Dagli insiemi alle categorie
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2014/12//
PB - Unione Matematica Italiana
VL - 7
IS - 3
SP - 461
EP - 480
LA - ita
UR - http://eudml.org/doc/290746
ER -

References

top
  1. BARR, M., e WELLS, C. (1984), Toposes triples and theories, Springer, Berlin. Zbl0567.18001MR771116DOI10.1007/978-1-4899-0021-0
  2. BÉNABOU, J. (1985), `Fibered categories and the foundations of naive category theory', Journal of Symbolic Logic, vol. 50, pp. 10-37. MR780520DOI10.2307/2273784
  3. BORCEUX, F. (1995), Handbook of categorical algebra, 3 voll., Cambridge University Press, Cambridge. MR1291599
  4. BOURBAKI, N. (1972), `Appendice: Univers', In Artin, M. et al., Théorie des topos et cohomologie etale des schémas, vol. 1, Springer, Berlin, pp. 185-217. MR354652
  5. EILENBERG, S., e MAC LANE, S. (1945), `General theory of natural equivalences', Transactions of the American Mathematical Society, vol. 58, pp. 231-294. Zbl0061.09204MR13131DOI10.2307/1990284
  6. FACCHINI, A., e LOLLI, G. (2010), `Insiemi e classi', La matematica nella società e nella cultura - Rivista dell'Unione Matematica Italiana, vol. 2, pp. 415-424. 
  7. FREYD, P., e SCEDROV, A. (1991), Categories, allegories, North Holland, Amsterdam. Zbl0698.18002MR1071176
  8. GROTHENDIECK, A., e VERDIER, J. (1972), `Théorie de topos', In Artin, M. et al., Théorie des topos et cohomologie etale des schémas, vol. 1, Springer, Berlin, pp. 299-518. MR354652
  9. JOHNSTONE, P. T. (2002), Sketches of an elephant: A topos theory compendium, 2 voll., Clarendon Press, Oxford. Zbl1071.18001MR2063092
  10. KAN, D. (1958), `Adjoint functors', Transactions of the American Mathematical Society, vol. 87, pp. 294-329. Zbl0090.38906MR131451DOI10.2307/1993102
  11. LAMBEK, J., e SCOTT, P. (1986), Introduction to higher order categorical logic. Cambridge University Press, Cambridge. Zbl0596.03002MR856915
  12. LEINSTER, T. (2014), Basic Category Theory, Cambridge University Press, Cambridge. Zbl1295.18001MR3307165DOI10.1017/CBO9781107360068
  13. LOLLI, G. (1977), Categorie, universi e princìpi di riflessione, Boringhieri, Torino. Zbl0369.18001MR486039
  14. MAC LANE, S. (1971), Categories for the working mathematician, Springer, New York. Zbl0232.18001MR1712872
  15. MAC LANE, S. (1977), Categorie nella pratica matematica, Boringhieri, Torino. 
  16. MAC LANE, S. (1998), Categories for the working mathematician, Second edition, Springer, New York. Zbl0906.18001MR1712872
  17. MARQUIS, J.-P. (2009), From a geometrical point of view. A study of the history and philosophy of category theory, Springer, New York. Zbl1165.18002MR2730089
  18. MCLARTY, C. (1995), Elementary categories, elementary toposes, Clarendon Press, Oxford. Zbl0828.18001MR1182992
  19. WILLIAMS, N. H. (1969), `On Grothendieck universes', Compositio Mathematica, vol. 21, pp. 1-3. Zbl0175.00701MR244035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.