Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito

Egle Bettio; Enrico Jabara

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 1, page 123-136
  • ISSN: 0392-4041

Abstract

top
In this paper we prove that a solvable, finitely generated group G of finite torsion-free rank admitting a quasi regular automorphism of prime order is virtually nilpotent. We also prove that the hypothesis that G is finitely generated can be omitted if G is a minimax group.

How to cite

top

Bettio, Egle, and Jabara, Enrico. "Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito." Bollettino dell'Unione Matematica Italiana 4.1 (2011): 123-136. <http://eudml.org/doc/290751>.

@article{Bettio2011,
abstract = {In this paper we prove that a solvable, finitely generated group G of finite torsion-free rank admitting a quasi regular automorphism of prime order is virtually nilpotent. We also prove that the hypothesis that G is finitely generated can be omitted if G is a minimax group.},
author = {Bettio, Egle, Jabara, Enrico},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {123-136},
publisher = {Unione Matematica Italiana},
title = {Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito},
url = {http://eudml.org/doc/290751},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Bettio, Egle
AU - Jabara, Enrico
TI - Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/2//
PB - Unione Matematica Italiana
VL - 4
IS - 1
SP - 123
EP - 136
AB - In this paper we prove that a solvable, finitely generated group G of finite torsion-free rank admitting a quasi regular automorphism of prime order is virtually nilpotent. We also prove that the hypothesis that G is finitely generated can be omitted if G is a minimax group.
LA - eng
UR - http://eudml.org/doc/290751
ER -

References

top
  1. ENDIMIONI, G., On almost regular automorphisms. Arch. Math. (Basel) 94 (2010), 19-27. Zbl1205.20041MR2581329DOI10.1007/s00013-009-0084-6
  2. ENDIMIONI, G., Polycyclic group admitting an almost regular automorphism of prime order. J. Algebra, 323 (2010), 3142-3146. Zbl1202.20037MR2629705DOI10.1016/j.jalgebra.2010.03.015
  3. HARTLEY, B. - MEIXNER, T., Finite soluble groups containing an element of prime order whose centralizer is small. Arch. Math. (Basel) 36 (1981), 211-213. Zbl0447.20014MR620509DOI10.1007/BF01223692
  4. JABARA, E., Una nota sui gruppi dotati di un automorfismo uniforme di ordine potenza di un primo. Rend. Sem. Mat. Univ. Padova, 84 (1990), 217-221. 
  5. JABARA, E., Automorphisms with finite Reidemeister number in residually finite groups. J. Algebra, 320 (2008), 3671-3679. Zbl1161.20026MR2457715DOI10.1016/j.jalgebra.2008.09.001
  6. KHUKHRO, E. I., Nilpotent groups and their automorphisms. de Gruyter Expositions in Mathematics, 8. Walter de Gruyter Co., Berlin (1993). Zbl0795.20018MR1224233DOI10.1515/9783110846218
  7. LENNOX, J. C. - ROBINSON, D. J. S., The theory of infinite soluble groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2004). MR2093872DOI10.1093/acprof:oso/9780198507284.001.0001
  8. ROBINSON, D. J. S., A course in the theory of groups. Second edition. GTM, 80. Springer-Verlag, New York (1996). MR1357169DOI10.1007/978-1-4419-8594-1
  9. ZAPPA, G., Sugli automorfismi uniformi nei gruppi di Hirsch. Ricerche Mat., 7 (1958), 3-13. MR100632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.