From the Boltzmann Equation to Hydrodynamic Equations in thin Layers

François Golse

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 2, page 163-186
  • ISSN: 0392-4041

Abstract

top
The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.

How to cite

top

Golse, François. "From the Boltzmann Equation to Hydrodynamic Equations in thin Layers." Bollettino dell'Unione Matematica Italiana 4.2 (2011): 163-186. <http://eudml.org/doc/290752>.

@article{Golse2011,
abstract = {The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.},
author = {Golse, François},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {163-186},
publisher = {Unione Matematica Italiana},
title = {From the Boltzmann Equation to Hydrodynamic Equations in thin Layers},
url = {http://eudml.org/doc/290752},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Golse, François
TI - From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/6//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 163
EP - 186
AB - The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.
LA - eng
UR - http://eudml.org/doc/290752
ER -

References

top
  1. AOKI, K., unpublished manuscript, 1998. 
  2. ARNOLD, V. - KHESIN, B., Topological methods in hydrodynamics, Springer, New York NY 1998. Zbl0902.76001MR1612569
  3. BARDOS, C. - GOLSE, F. - LEVERMORE, D., Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressiblesC. R. Acad. Sci., 309 (1989), 727-732. Zbl0697.35111MR1054287
  4. BARDOS, C. - GOLSE, F. - LEVERMORE, D., Fluid Dynamic Limits of the Boltzmann Equation I, J. Stat. Phys., 63 (1991), 323-344. MR1115587DOI10.1007/BF01026608
  5. BARDOS, C. - GOLSE, F. - LEVERMORE, D., Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Comm. Pure and Applied Math., 46 (1993), 667-753. Zbl0817.76002MR1213991DOI10.1002/cpa.3160460503
  6. BARDOS, C. - GOLSE, F. - SONE, Y., Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300. Zbl1125.82013MR2264610DOI10.1007/s10955-006-9077-z
  7. BARDOS, C. - LEVERMORE, D. - UKAI, S. - YANG, T., Kinetic equations: fluid dynamical limits and viscous heating, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 1-49. Zbl1151.35066MR2398020
  8. BARDOS, C. - UKAI, S., The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models and Methods in the Appl. Sci., 1 (1991), 235-257. Zbl0758.35060MR1115292DOI10.1142/S0218202591000137
  9. BATCHELOR, G. K., An introduction to fluid dynamics, Cambridge Univ. Press, 2000. MR1744638
  10. BOUCHUT, F. - GOLSE, F. - PULVIRENTI, M., Kinetic Equations and Asymptotic Theory, L. Desvillettes & B. Perthame ed., Editions scientifiques et médicales Elsevier, Paris, 2000. MR2065070
  11. BRENIER, Y., Homogeneous hydrostatic flows with convex velocity profile, Nonlinearity, 12 (1999), 495-512. Zbl0984.35131MR1690189DOI10.1088/0951-7715/12/3/004
  12. BRENIER, Y., Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595. Zbl1040.35068MR2004720DOI10.1016/S0007-4497(03)00024-1
  13. CAFLISCH, R., The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. on Pure and Appl. Math., 33 (1980), 651-666. Zbl0424.76060MR586416DOI10.1002/cpa.3160330506
  14. CAFLISCH, R. - SAMMARTINO, M., Existence and singularities for the Prandtl boundary layer equations, Z. Angew. Math. Mech., 80 (2000), 733-744. Zbl1050.76016MR1801538DOI10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
  15. CERCIGNANI, C., Bifurcation problems in fluid mechanics, Meccanica - J. Italian Assoc. Theoret. Appl. Mech., 5 (1970), 7-16. Zbl0195.27401MR261850
  16. CERCIGNANI, C., The Boltzmann Equation and Its Applications, Springer-Verlag, New-York NY, 1988. Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
  17. CERCIGNANI, C. - ILLNER, R. - PULVIRENTI, M., The Mathematical Theory of Dilute Gases, Springer Verlag, New York NY, 1994. Zbl0813.76001MR1307620DOI10.1007/978-1-4419-8524-8
  18. DAFERMOS, C., The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. Zbl0448.73004MR546634DOI10.1007/BF00250353
  19. DEMASI, A. - ESPOSITO, R. - LEBOWITZ, J., Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. on Pure and Appl. Math., 42 (1990), 1189-1214. Zbl0689.76024MR1029125DOI10.1002/cpa.3160420810
  20. DIPERNA, R., Uniqueness of solutions to hyperbolic conservation laws, Indiana U. Math. J., 28 (1979), 137-188. Zbl0409.35057MR523630DOI10.1512/iumj.1979.28.28011
  21. DIPERNA, R. - LIONS, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366. Zbl0698.45010MR1014927DOI10.2307/1971423
  22. E, W., ENGQUIST, B., Blowup of solutions of the unsteady Prandtl equation, Comm. on Pure and Appl. Math., 50 (1997), 1287-1293. Zbl0908.35099MR1476316DOI10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
  23. GOLSE, F. - LEVERMORE, D., The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation, Comm. on Pure and Appl. Math., 55 (2002), 336-393. Zbl1044.76055MR1866367DOI10.1002/cpa.3011
  24. GOLSE, F. - SAINT-RAYMOND, L., The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161. Zbl1060.76101MR2025302DOI10.1007/s00222-003-0316-5
  25. GOLSE, F. - SAINT-RAYMOND, L., The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures et Appl., 91 (2009), 508-552. Zbl1178.35290MR2517786DOI10.1016/j.matpur.2009.01.013
  26. GRAD, H., Asymptotic theory of the Boltzmann equation II, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, pp. 26-59. MR156656
  27. GRENIER, E., On the derivation of homogeneous hydrostatic equations, M2AN Math. Modél. Anal. Num., 33 (1999), 965-970. Zbl0947.76013MR1726718DOI10.1051/m2an:1999128
  28. GRENIER, E., Non dérivation des équations de Prandtl, Séminaire Equations aux Dérivées Partielles1997-1998, Exp. No. XVIII, Ecole Polytech. Palaiseau1998. MR1660531
  29. LERAY, J., Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. Zbl60.0726.05MR1555394DOI10.1007/BF02547354
  30. LEVERMORE, D. - MASMOUDI, N., From the Boltzmann Equation to an Incompressible Navier-Stokes-Fourier System, Archive for Rational Mech. and Anal., 196 (2010), 753-809. Zbl1304.35476MR2644440DOI10.1007/s00205-009-0254-5
  31. LIONS, P.-L. - MASMOUDI, N., From Boltzmann Equation to the Navier-Stokes and Euler Equations I, Archive Rat. Mech. & Anal., 158 (2001), 173-193. Zbl0987.76088MR1842343DOI10.1007/s002050100143
  32. LIONS, P.-L. - MASMOUDI, N., From Boltzmann Equation to the Navier-Stokes and Euler Equations II, Archive Rat. Mech. & Anal., 158 (2001), 195-211. Zbl0987.76088MR1842343DOI10.1007/s002050100143
  33. MAXWELL, J. C., On the dynamical theory of gases, Philosophical Transactions, 157 (1866). 
  34. NISHIDA, T., Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148. Zbl0381.76060MR503305
  35. SAINT-RAYMOND, L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., 166 (2003), 47-80. Zbl1016.76071MR1952079DOI10.1007/s00205-002-0228-3
  36. SAMMARTINO, M. - CAFLISCH, R., Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461. Zbl0913.35102MR1617542DOI10.1007/s002200050304
  37. SONE, Y., Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002. Zbl1021.76002MR1919070DOI10.1007/978-1-4612-0061-1
  38. SONE, Y., Molecular Gas Dynamics, Theory, Techniques, and Applications, Birkhäuser, Boston, 2007. Zbl1144.76001MR2274674DOI10.1007/978-0-8176-4573-1
  39. SONE, Y. - BARDOS, C. - GOLSE, F. - SUGIMOTO, H., Asymptotic theory for the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory, Eur. J. Mech. B Fluids, 19 (2000), 325-360. Zbl0973.76076MR1764652DOI10.1016/S0997-7546(00)00110-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.