From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 2, page 163-186
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGolse, François. "From the Boltzmann Equation to Hydrodynamic Equations in thin Layers." Bollettino dell'Unione Matematica Italiana 4.2 (2011): 163-186. <http://eudml.org/doc/290752>.
@article{Golse2011,
abstract = {The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.},
author = {Golse, François},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {163-186},
publisher = {Unione Matematica Italiana},
title = {From the Boltzmann Equation to Hydrodynamic Equations in thin Layers},
url = {http://eudml.org/doc/290752},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Golse, François
TI - From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/6//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 163
EP - 186
AB - The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.
LA - eng
UR - http://eudml.org/doc/290752
ER -
References
top- AOKI, K., unpublished manuscript, 1998.
- ARNOLD, V. - KHESIN, B., Topological methods in hydrodynamics, Springer, New York NY 1998. Zbl0902.76001MR1612569
- BARDOS, C. - GOLSE, F. - LEVERMORE, D., Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressiblesC. R. Acad. Sci., 309 (1989), 727-732. Zbl0697.35111MR1054287
- BARDOS, C. - GOLSE, F. - LEVERMORE, D., Fluid Dynamic Limits of the Boltzmann Equation I, J. Stat. Phys., 63 (1991), 323-344. MR1115587DOI10.1007/BF01026608
- BARDOS, C. - GOLSE, F. - LEVERMORE, D., Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Comm. Pure and Applied Math., 46 (1993), 667-753. Zbl0817.76002MR1213991DOI10.1002/cpa.3160460503
- BARDOS, C. - GOLSE, F. - SONE, Y., Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300. Zbl1125.82013MR2264610DOI10.1007/s10955-006-9077-z
- BARDOS, C. - LEVERMORE, D. - UKAI, S. - YANG, T., Kinetic equations: fluid dynamical limits and viscous heating, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 1-49. Zbl1151.35066MR2398020
- BARDOS, C. - UKAI, S., The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models and Methods in the Appl. Sci., 1 (1991), 235-257. Zbl0758.35060MR1115292DOI10.1142/S0218202591000137
- BATCHELOR, G. K., An introduction to fluid dynamics, Cambridge Univ. Press, 2000. MR1744638
- BOUCHUT, F. - GOLSE, F. - PULVIRENTI, M., Kinetic Equations and Asymptotic Theory, L. Desvillettes & B. Perthame ed., Editions scientifiques et médicales Elsevier, Paris, 2000. MR2065070
- BRENIER, Y., Homogeneous hydrostatic flows with convex velocity profile, Nonlinearity, 12 (1999), 495-512. Zbl0984.35131MR1690189DOI10.1088/0951-7715/12/3/004
- BRENIER, Y., Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595. Zbl1040.35068MR2004720DOI10.1016/S0007-4497(03)00024-1
- CAFLISCH, R., The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. on Pure and Appl. Math., 33 (1980), 651-666. Zbl0424.76060MR586416DOI10.1002/cpa.3160330506
- CAFLISCH, R. - SAMMARTINO, M., Existence and singularities for the Prandtl boundary layer equations, Z. Angew. Math. Mech., 80 (2000), 733-744. Zbl1050.76016MR1801538DOI10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
- CERCIGNANI, C., Bifurcation problems in fluid mechanics, Meccanica - J. Italian Assoc. Theoret. Appl. Mech., 5 (1970), 7-16. Zbl0195.27401MR261850
- CERCIGNANI, C., The Boltzmann Equation and Its Applications, Springer-Verlag, New-York NY, 1988. Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
- CERCIGNANI, C. - ILLNER, R. - PULVIRENTI, M., The Mathematical Theory of Dilute Gases, Springer Verlag, New York NY, 1994. Zbl0813.76001MR1307620DOI10.1007/978-1-4419-8524-8
- DAFERMOS, C., The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. Zbl0448.73004MR546634DOI10.1007/BF00250353
- DEMASI, A. - ESPOSITO, R. - LEBOWITZ, J., Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. on Pure and Appl. Math., 42 (1990), 1189-1214. Zbl0689.76024MR1029125DOI10.1002/cpa.3160420810
- DIPERNA, R., Uniqueness of solutions to hyperbolic conservation laws, Indiana U. Math. J., 28 (1979), 137-188. Zbl0409.35057MR523630DOI10.1512/iumj.1979.28.28011
- DIPERNA, R. - LIONS, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366. Zbl0698.45010MR1014927DOI10.2307/1971423
- E, W., ENGQUIST, B., Blowup of solutions of the unsteady Prandtl equation, Comm. on Pure and Appl. Math., 50 (1997), 1287-1293. Zbl0908.35099MR1476316DOI10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
- GOLSE, F. - LEVERMORE, D., The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation, Comm. on Pure and Appl. Math., 55 (2002), 336-393. Zbl1044.76055MR1866367DOI10.1002/cpa.3011
- GOLSE, F. - SAINT-RAYMOND, L., The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161. Zbl1060.76101MR2025302DOI10.1007/s00222-003-0316-5
- GOLSE, F. - SAINT-RAYMOND, L., The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures et Appl., 91 (2009), 508-552. Zbl1178.35290MR2517786DOI10.1016/j.matpur.2009.01.013
- GRAD, H., Asymptotic theory of the Boltzmann equation II, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, pp. 26-59. MR156656
- GRENIER, E., On the derivation of homogeneous hydrostatic equations, M2AN Math. Modél. Anal. Num., 33 (1999), 965-970. Zbl0947.76013MR1726718DOI10.1051/m2an:1999128
- GRENIER, E., Non dérivation des équations de Prandtl, Séminaire Equations aux Dérivées Partielles1997-1998, Exp. No. XVIII, Ecole Polytech. Palaiseau1998. MR1660531
- LERAY, J., Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. Zbl60.0726.05MR1555394DOI10.1007/BF02547354
- LEVERMORE, D. - MASMOUDI, N., From the Boltzmann Equation to an Incompressible Navier-Stokes-Fourier System, Archive for Rational Mech. and Anal., 196 (2010), 753-809. Zbl1304.35476MR2644440DOI10.1007/s00205-009-0254-5
- LIONS, P.-L. - MASMOUDI, N., From Boltzmann Equation to the Navier-Stokes and Euler Equations I, Archive Rat. Mech. & Anal., 158 (2001), 173-193. Zbl0987.76088MR1842343DOI10.1007/s002050100143
- LIONS, P.-L. - MASMOUDI, N., From Boltzmann Equation to the Navier-Stokes and Euler Equations II, Archive Rat. Mech. & Anal., 158 (2001), 195-211. Zbl0987.76088MR1842343DOI10.1007/s002050100143
- MAXWELL, J. C., On the dynamical theory of gases, Philosophical Transactions, 157 (1866).
- NISHIDA, T., Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148. Zbl0381.76060MR503305
- SAINT-RAYMOND, L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., 166 (2003), 47-80. Zbl1016.76071MR1952079DOI10.1007/s00205-002-0228-3
- SAMMARTINO, M. - CAFLISCH, R., Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461. Zbl0913.35102MR1617542DOI10.1007/s002200050304
- SONE, Y., Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002. Zbl1021.76002MR1919070DOI10.1007/978-1-4612-0061-1
- SONE, Y., Molecular Gas Dynamics, Theory, Techniques, and Applications, Birkhäuser, Boston, 2007. Zbl1144.76001MR2274674DOI10.1007/978-0-8176-4573-1
- SONE, Y. - BARDOS, C. - GOLSE, F. - SUGIMOTO, H., Asymptotic theory for the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory, Eur. J. Mech. B Fluids, 19 (2000), 325-360. Zbl0973.76076MR1764652DOI10.1016/S0997-7546(00)00110-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.