Products of Toeplitz and Hankel operators on the Bergman space in the polydisk
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topPaweł Sobolewski. "Products of Toeplitz and Hankel operators on the Bergman space in the polydisk." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290754>.
@article{PawełSobolewski2018,
abstract = {In this paper we obtain a condition for analytic square integrable functions $f,g$ which guarantees the boundedness of products of the Toeplitz operators $T_fT_\{\bar\{g\}\}$ densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators $H_fH^*_g$ is also given.},
author = {Paweł Sobolewski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Toeplitz operator; Bergman space},
language = {eng},
number = {2},
pages = {null},
title = {Products of Toeplitz and Hankel operators on the Bergman space in the polydisk},
url = {http://eudml.org/doc/290754},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Paweł Sobolewski
TI - Products of Toeplitz and Hankel operators on the Bergman space in the polydisk
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - In this paper we obtain a condition for analytic square integrable functions $f,g$ which guarantees the boundedness of products of the Toeplitz operators $T_fT_{\bar{g}}$ densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators $H_fH^*_g$ is also given.
LA - eng
KW - Toeplitz operator; Bergman space
UR - http://eudml.org/doc/290754
ER -
References
top- Gonessa, J., Sheba, B., Toeplitz products on the vector weighted Bergman spaces, Acta Sci. Math. (Szeged) 80 (3-4) (2014), 511-530.
- Lu, Y., Liu, C., Toeplitz and Hankel products on Bergman spaces of the unit ball, Chin. Ann. Math. Ser. B 30 (3) (2009), 293-310.
- Lu, Y., Shang, S., Bounded Hankel products on the Bergman space of the polydisk, Canad. J. Math. 61 (1) (2009), 190-204.
- Miao, J., Bounded Toeplitz products on the weighted Bergman spaces of the unit ball, J. Math. Anal. Appl. 346 (1) (2008), 305-313.
- Michalska, M., Sobolewski, P., Bounded Toeplitz and Hankel products on the weighted Bergman spaces of the unit ball, J. Aust. Math. Soc. 99 (2) (2015), 237-249.
- Nazarov, F., A counter-example to Sarason’s conjecture, preprint. Available at http://www.math.msu.edu/~fedja/prepr.html.
- Pott, S., Strouse, E., Products of Toeplitz operators on the Bergman spaces , Algebra i Analiz 18 (1) (2006), 144-161 (English transl. in St. Petersburg Math. J. 18 (1) (2007), 105-118).
- Stroethoff, K., Zheng, D., Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (2) (1992), 773-794.
- Stroethoff, K., Zheng, D., Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1) (1999), 289-313.
- Stroethoff, K., Zheng, D., Invertible Toeplitz products, J. Funct. Anal. 195 (1) (2002), 48-70.
- Stroethoff, K., Zheng, D., Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278 (1) (2003), 125-135.
- Stroethoff, K., Zheng, D., Bounded Toeplitz products on Bergman spaces of the unit ball, J. Math. Anal. Appl. 325 (1) (2007), 114-129.
- Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Operator Theory 59 (2) (2008), 277-308.
- Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.