On the existence of connections with a prescribed skew-symmetric Ricci tensor

Jan Kurek; Włodzimierz Mikulski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 2
  • ISSN: 0365-1029

Abstract

top
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.

How to cite

top

Jan Kurek, and Włodzimierz Mikulski. "On the existence of connections with a prescribed skew-symmetric Ricci tensor." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290755>.

@article{JanKurek2018,
abstract = {We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.},
author = {Jan Kurek, Włodzimierz Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Linear connection; Ricci tensor},
language = {eng},
number = {2},
pages = {null},
title = {On the existence of connections with a prescribed skew-symmetric Ricci tensor},
url = {http://eudml.org/doc/290755},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Jan Kurek
AU - Włodzimierz Mikulski
TI - On the existence of connections with a prescribed skew-symmetric Ricci tensor
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
LA - eng
KW - Linear connection; Ricci tensor
UR - http://eudml.org/doc/290755
ER -

References

top
  1. Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516. 
  2. Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (2) (1979), 167-179. 
  3. Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A–B 281 (11) (1975), 389-391. 
  4. Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963. 
  5. Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528-536. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.