On the existence of connections with a prescribed skew-symmetric Ricci tensor
Jan Kurek; Włodzimierz Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topJan Kurek, and Włodzimierz Mikulski. "On the existence of connections with a prescribed skew-symmetric Ricci tensor." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290755>.
@article{JanKurek2018,
abstract = {We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.},
author = {Jan Kurek, Włodzimierz Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Linear connection; Ricci tensor},
language = {eng},
number = {2},
pages = {null},
title = {On the existence of connections with a prescribed skew-symmetric Ricci tensor},
url = {http://eudml.org/doc/290755},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Jan Kurek
AU - Włodzimierz Mikulski
TI - On the existence of connections with a prescribed skew-symmetric Ricci tensor
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
LA - eng
KW - Linear connection; Ricci tensor
UR - http://eudml.org/doc/290755
ER -
References
top- Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516.
- Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (2) (1979), 167-179.
- Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A–B 281 (11) (1975), 389-391.
- Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963.
- Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528-536.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.