On a two-parameter generalization of Jacobsthal numbers and its graph interpretation
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topDorota Bród. "On a two-parameter generalization of Jacobsthal numbers and its graph interpretation." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290756>.
@article{DorotaBród2018,
abstract = {In this paper we introduce a two-parameter generalization of the classical Jacobsthal numbers ((s,p)-Jacobsthal numbers). We present some properties of the presented sequence, among others Binet’s formula, Cassini’s identity, the generating function. Moreover, we give a graph interpretation of (s,p)-Jacobsthal numbers, related to independence in graphs.},
author = {Dorota Bród},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Jacobsthal numbers; generalized Jacobsthal numbers; Binet’s formula; generating function; graph interpretation; Merrifield-Simmons index},
language = {eng},
number = {2},
pages = {null},
title = {On a two-parameter generalization of Jacobsthal numbers and its graph interpretation},
url = {http://eudml.org/doc/290756},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Dorota Bród
TI - On a two-parameter generalization of Jacobsthal numbers and its graph interpretation
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - In this paper we introduce a two-parameter generalization of the classical Jacobsthal numbers ((s,p)-Jacobsthal numbers). We present some properties of the presented sequence, among others Binet’s formula, Cassini’s identity, the generating function. Moreover, we give a graph interpretation of (s,p)-Jacobsthal numbers, related to independence in graphs.
LA - eng
KW - Jacobsthal numbers; generalized Jacobsthal numbers; Binet’s formula; generating function; graph interpretation; Merrifield-Simmons index
UR - http://eudml.org/doc/290756
ER -
References
top- Dasdemir, A., The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite Journal of Science and Engineering 3 (2) (2016), 99-104.
- Diestel, R., Graph Theory, Springer-Verlag, Heidelberg-New York, 2005.
- Falcon, S., On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (1) (2014), 67-77.
- Gutman, I., Wagner, S., Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, Acta Appl. Math. 112 (3) (2010), 323-348.
- Jhala, D., Sisodiya, K., Rathore, G. P. S., On some identities for k-Jacobsthal numbers, Int. J. Math. Anal. (Ruse) 7 (9–12) (2013), 551-556.
- Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart. 34 (1) (1996), 40-54.
- Szynal-Liana, A., Włoch, A., Włoch, I., On generalized Pell numbers generated by Fibonacci and Lucas numbers, Ars Combin. 115 (2014), 411-423.
- Uygun, S., The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences 9 (70) (2015), 3467-3476.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.