An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAlbo Carlos Cavalheiro. "An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290758>.
@article{AlboCarlosCavalheiro2018,
abstract = {The main result establishes that a weak solution of degenerate nonlinear elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.},
author = {Albo Carlos Cavalheiro},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Degenerate nonlinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {null},
title = {An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/290758},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Albo Carlos Cavalheiro
TI - An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - The main result establishes that a weak solution of degenerate nonlinear elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.
LA - eng
KW - Degenerate nonlinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/290758
ER -
References
top- Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. 45 (2002), 363-389.
- Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
- Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491-525.
- Garcıa-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
- Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.
- Kufner, A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985.
- Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1-122.
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
- Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.