An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 1
  • ISSN: 0365-1029

Abstract

top
The main result establishes that a weak solution of degenerate nonlinear  elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.

How to cite

top

Albo Carlos Cavalheiro. "An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290758>.

@article{AlboCarlosCavalheiro2018,
abstract = {The main result establishes that a weak solution of degenerate nonlinear  elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.},
author = {Albo Carlos Cavalheiro},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Degenerate nonlinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {null},
title = {An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/290758},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Albo Carlos Cavalheiro
TI - An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - The main result establishes that a weak solution of degenerate nonlinear  elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.
LA - eng
KW - Degenerate nonlinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/290758
ER -

References

top
  1. Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. 45 (2002), 363-389. 
  2. Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. 
  3. Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491-525. 
  4. Garcıa-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985. 
  5. Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993. 
  6. Kufner, A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985. 
  7. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. 
  8. Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1-122. 
  9. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986. 
  10. Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000. 
  11. Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.