The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
Halina Bielak; Kamil Powroźnik
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topHalina Bielak, and Kamil Powroźnik. "The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290759>.
@article{HalinaBielak2018,
abstract = {Let $\mathcal \{T\}=(V,\mathcal \{E\})$ be a 3-uniform linear hypertree. We consider a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$ of the hypertree $\mathcal \{T\}$, with hyperedge densities satisfying some conditions, such that the hypertree $\mathcal \{T\}$ does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree $\mathcal \{T\}$ in a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$.},
author = {Halina Bielak, Kamil Powroźnik},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Uniform linear hypertree; blow-up hypergraph; transversal; Turan density},
language = {eng},
number = {2},
pages = {null},
title = {The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm},
url = {http://eudml.org/doc/290759},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Halina Bielak
AU - Kamil Powroźnik
TI - The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - Let $\mathcal {T}=(V,\mathcal {E})$ be a 3-uniform linear hypertree. We consider a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$ of the hypertree $\mathcal {T}$, with hyperedge densities satisfying some conditions, such that the hypertree $\mathcal {T}$ does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree $\mathcal {T}$ in a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$.
LA - eng
KW - Uniform linear hypertree; blow-up hypergraph; transversal; Turan density
UR - http://eudml.org/doc/290759
ER -
References
top- Baber, R., Johnson, J. R., Talbot, J., The minimal density of triangles in tripartite graphs, LMS J. Comput. Math. 13 (2010), 388-413,
- http://dx.doi.org/10.1112/S1461157009000436.
- Berge, C., Graphs and Hypergraphs, Elsevier, New York, 1973.
- Bielak, H., Powroznik, K., An efficient algorithm for the density Tur´an problem of some unicyclic graphs, in: Proceedings of the 2014 FedCSIS, Annals of Computer Science and Information Systems 2 (2014), 479-486,
- http://dx.doi.org/10.15439/978-83-60810-58-3.
- Bollobas, B., Extremal Graph Theory, Academic Press, London, 1978.
- Bondy, A., Shen, J., Thomasse, S., Thomassen, C., Density conditions for triangles in multipartite graphs, Combinatorica 26 (2) (2006), 121-131,
- http://dx.doi.org/10.1007/s00493-006-0009-y.
- Brown, W. G., Erdos, P., Simonovits, M., Extremal problems for directed graphs, J. Combin. Theory B 15 (1) (1973), 77-93,
- http://dx.doi.org/10.1016/0095-8956(73)90034-8.
- Csikvari, P., Nagy, Z. L., The density Tur´an problem, Combin. Probab. Comput. 21 (2012), 531-553,
- http://dx.doi.org/10.1017/S0963548312000016.
- Furedi, Z., Turan type problems, in: (A. D. Keedwell, ed.) Survey in Combinatorics, 1991, Cambridge Univ. Press, Cambridge, 1991, 253-300,
- http://dx.doi.org/10.1017/cbo9780511666216.010.
- Godsil, C. D., Royle, G., Algebraic Graph Theory, Springer-Verlag, New York, 2001,
- http://dx.doi.org/10.1007/978-1-4613-0163-9.
- Jin, G., Complete subgraphs of r-partite graphs, Combin. Probab. Comput. 1 (1992), 241-250,
- http://dx.doi.org/10.1017/s0963548300000274.
- Nagy, Z. L., A multipartite version of the Turan problem – density conditions and eigenvalues, Electron. J. Combin. 18 (1) (2011), Paper 46, 15 pp.
- Turan, P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452.
- Yuster, R., Independent transversal in r-partite graphs, Discrete Math. 176 (1997), 255-261,
- http://dx.doi.org/10.1016/s0012-365x(96)00300-7.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.