The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm

Halina Bielak; Kamil Powroźnik

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Let 𝒯 = ( V , ) be a  3-uniform linear hypertree. We consider a blow-up hypergraph [ 𝒯 ] . We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph [ 𝒯 ] of the hypertree 𝒯 , with hyperedge densities satisfying some conditions, such that the hypertree 𝒯 does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree 𝒯 in a blow-up hypergraph [ 𝒯 ] .

How to cite

top

Halina Bielak, and Kamil Powroźnik. "The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.2 (2018): null. <http://eudml.org/doc/290759>.

@article{HalinaBielak2018,
abstract = {Let $\mathcal \{T\}=(V,\mathcal \{E\})$ be a  3-uniform linear hypertree. We consider a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$ of the hypertree $\mathcal \{T\}$, with hyperedge densities satisfying some conditions, such that the hypertree $\mathcal \{T\}$ does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree $\mathcal \{T\}$ in a blow-up hypergraph $\mathcal \{B\}[\mathcal \{T\}]$.},
author = {Halina Bielak, Kamil Powroźnik},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Uniform linear hypertree; blow-up hypergraph; transversal; Turan density},
language = {eng},
number = {2},
pages = {null},
title = {The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm},
url = {http://eudml.org/doc/290759},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Halina Bielak
AU - Kamil Powroźnik
TI - The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 2
SP - null
AB - Let $\mathcal {T}=(V,\mathcal {E})$ be a  3-uniform linear hypertree. We consider a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$ of the hypertree $\mathcal {T}$, with hyperedge densities satisfying some conditions, such that the hypertree $\mathcal {T}$ does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree $\mathcal {T}$ in a blow-up hypergraph $\mathcal {B}[\mathcal {T}]$.
LA - eng
KW - Uniform linear hypertree; blow-up hypergraph; transversal; Turan density
UR - http://eudml.org/doc/290759
ER -

References

top
  1. Baber, R., Johnson, J. R., Talbot, J., The minimal density of triangles in tripartite graphs, LMS J. Comput. Math. 13 (2010), 388-413, 
  2. http://dx.doi.org/10.1112/S1461157009000436. 
  3. Berge, C., Graphs and Hypergraphs, Elsevier, New York, 1973. 
  4. Bielak, H., Powroznik, K., An efficient algorithm for the density Tur´an problem of some unicyclic graphs, in: Proceedings of the 2014 FedCSIS, Annals of Computer Science and Information Systems 2 (2014), 479-486, 
  5. http://dx.doi.org/10.15439/978-83-60810-58-3. 
  6. Bollobas, B., Extremal Graph Theory, Academic Press, London, 1978. 
  7. Bondy, A., Shen, J., Thomasse, S., Thomassen, C., Density conditions for triangles in multipartite graphs, Combinatorica 26 (2) (2006), 121-131, 
  8. http://dx.doi.org/10.1007/s00493-006-0009-y. 
  9. Brown, W. G., Erdos, P., Simonovits, M., Extremal problems for directed graphs, J. Combin. Theory B 15 (1) (1973), 77-93, 
  10. http://dx.doi.org/10.1016/0095-8956(73)90034-8. 
  11. Csikvari, P., Nagy, Z. L., The density Tur´an problem, Combin. Probab. Comput. 21 (2012), 531-553, 
  12. http://dx.doi.org/10.1017/S0963548312000016. 
  13. Furedi, Z., Turan type problems, in: (A. D. Keedwell, ed.) Survey in Combinatorics, 1991, Cambridge Univ. Press, Cambridge, 1991, 253-300, 
  14. http://dx.doi.org/10.1017/cbo9780511666216.010. 
  15. Godsil, C. D., Royle, G., Algebraic Graph Theory, Springer-Verlag, New York, 2001, 
  16. http://dx.doi.org/10.1007/978-1-4613-0163-9. 
  17. Jin, G., Complete subgraphs of r-partite graphs, Combin. Probab. Comput. 1 (1992), 241-250, 
  18. http://dx.doi.org/10.1017/s0963548300000274. 
  19. Nagy, Z. L., A multipartite version of the Turan problem – density conditions and eigenvalues, Electron. J. Combin. 18 (1) (2011), Paper 46, 15 pp. 
  20. Turan, P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452. 
  21. Yuster, R., Independent transversal in r-partite graphs, Discrete Math. 176 (1997), 255-261, 
  22. http://dx.doi.org/10.1016/s0012-365x(96)00300-7. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.