Spectral analysis of singular Sturm-Liouville operators on time scales
Bilender P. Allahverdiev; Huseyin Tuna
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topBilender P. Allahverdiev, and Huseyin Tuna. "Spectral analysis of singular Sturm-Liouville operators on time scales." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290760>.
@article{BilenderP2018,
abstract = {In this paper, we consider properties of the spectrum of a Sturm-Liouvilleoperator on time scales. We will prove that the regular symmetricSturm-Liouville operator is semi-bounded from below. We will also give someconditions for the self-adjoint operator associated with the singularSturm-Liouville expression to have a discrete spectrum. Finally, we willinvestigate the continuous spectrum of this operator.},
author = {Bilender P. Allahverdiev, Huseyin Tuna},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Sturm-Liouville operator; time scales; splitting method; discrete spectrum; continuous spectrum},
language = {eng},
number = {1},
pages = {null},
title = {Spectral analysis of singular Sturm-Liouville operators on time scales},
url = {http://eudml.org/doc/290760},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Bilender P. Allahverdiev
AU - Huseyin Tuna
TI - Spectral analysis of singular Sturm-Liouville operators on time scales
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - In this paper, we consider properties of the spectrum of a Sturm-Liouvilleoperator on time scales. We will prove that the regular symmetricSturm-Liouville operator is semi-bounded from below. We will also give someconditions for the self-adjoint operator associated with the singularSturm-Liouville expression to have a discrete spectrum. Finally, we willinvestigate the continuous spectrum of this operator.
LA - eng
KW - Sturm-Liouville operator; time scales; splitting method; discrete spectrum; continuous spectrum
UR - http://eudml.org/doc/290760
ER -
References
top- Agarwal, R. P., Bohner, M., Li, W.-T., Nonoscillation and Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 2004.
- Anderson, D. R., Guseinov, G. Sh., Hoffacker, J., Higher-order self-adjoint boundary-value problems on time scales, J. Comput. Appl. Math. 194 (2) (2006), 309-342.
- Atici Merdivenci, F., Guseinov, G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math. 141 (1-2) (2002), 75-99.
- Berkowitz, J., On the discreteness of spectra of singular Sturm-Liouville problems, Comm. Pure Appl. Math. 12 (1959), 523-542.
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales, Birkhauser, Boston, 2001.
- Bohner, M., Peterson, A. (Eds.), Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
- Dunford, N., Schwartz, J. T., Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.
- Friedrics, K., Criteria for the discrete character of the spectra of ordinary differential equations, Courant Anniversary Volume, Interscience, New York, 1948.
- Friedrics, K., Criteria for discrete spectra, Comm. Pure. Appl. Math. 3 (1950), 439-449.
- Glazman, I. M., Direct methods of the qualitative spectral analysis of singular differential operators, Israel Program of Scientific Translations, Jerusalem, 1965.
- Guseinov, G. Sh., Self-adjoint boundary value problems on time scales and symmetric Green’s functions, Turkish J. Math. 29 (4) (2005), 365-380.
- Guseinov, G. Sh., An expansion theorem for a Sturm-Liouville operator on semiunbounded time scales, Adv. Dyn. Syst. Appl. 3 (1) (2008), 147-160.
- Hilger, S., Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math. 18 (1-2) (1990), 18-56.
- Hinton, D. B., Lewis, R. T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347.
- Huseynov, A., Weyl’s limit point and limit circle for a dynamic systems, in: Dynamical Systems and Methods, Springer, New York, 2012, 215-225.
- Ismagilov, R. S., Conditions for semiboundedness and discreteness of the spectrum for one-dimensional differential equations, Dokl. Akad. Nauk SSSR 140 (1961), 33-36 (Russian).
- Jones, M. A., Song, B., Thomas, D. M., Controlling wound healing through debridement, Math. Comput. Modelling 40 (9-10) (2004), 1057-1064.
- Kreyszig, E., Introductory Functional Analysis with Applications, Wiley, New York, 1989.
- Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.
- Molchanov, A. M., Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations, Trudy Moskov. Mat. Obs. 2 (1953), 169-200 (Russian).
- Naimark, M. A., Linear Differential Operators, 2nd edition., Nauka, Moscow, 1969, English transl. of 1st edition, Frederick Ungar Publishing Co., New York, 1969.
- Rollins, L. W., Criteria for discrete spectrum of singular self-adjoint differential operators, Proc. Amer. Math. Soc. 34 (1972), 195-200.
- Rynne, B. P., spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328 (2007), 1217-1236.
- Spedding, V., Taming nature’s numbers, New Scientist 179 (2003), 28-31.
- Thomas, D. M., Vandemuelebroeke, L., Yamaguchi, K., A mathematical evolution model for phytoremediation of metals, Discrete Contin. Dyn. Syst. Ser. B (2) (2005), 411-422.
- Weyl, H., Uber gewohnliche Differentialgleichungen mit Singularitaten und die zugehorigen Entwicklungen willkurlicher Funktionen, Math. Ann. 68 (2) (1910), 220-269.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.