Some new inequalities of Hermite-Hadamard type for GA-convex functions

Sever S. Dragomir

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Some new inequalities of Hermite-Hadamard type for GA-convex functions defined on positive intervals are given. Refinements and weighted version of known inequalities are provided. Some applications for special means are also obtained.

How to cite

top

Sever S. Dragomir. "Some new inequalities of Hermite-Hadamard type for GA-convex functions." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290762>.

@article{SeverS2018,
abstract = {Some new inequalities of Hermite-Hadamard type for GA-convex functions defined on positive intervals are given. Refinements and weighted version of known inequalities are provided. Some applications for special means are also obtained.},
author = {Sever S. Dragomir},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Convex functions; integral inequalities; GA-convex functions; Hermite-Hadamard inequalities},
language = {eng},
number = {1},
pages = {null},
title = {Some new inequalities of Hermite-Hadamard type for GA-convex functions},
url = {http://eudml.org/doc/290762},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Sever S. Dragomir
TI - Some new inequalities of Hermite-Hadamard type for GA-convex functions
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - Some new inequalities of Hermite-Hadamard type for GA-convex functions defined on positive intervals are given. Refinements and weighted version of known inequalities are provided. Some applications for special means are also obtained.
LA - eng
KW - Convex functions; integral inequalities; GA-convex functions; Hermite-Hadamard inequalities
UR - http://eudml.org/doc/290762
ER -

References

top
  1. Alomari, M., Darus, M., The Hadamard’s inequality for s-convex function, Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646. 
  2. Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M., Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308. 
  3. Beckenbach, E. F., Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460. 
  4. Cristescu, G., Hadamard type inequalities for convolution of h-convex functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11. 
  5. Dragomir, S. S., Some remarks on Hadamard’s inequalities for convex functions, Extracta Math. 9 (2) (1994), 88-94. 
  6. Dragomir, S. S., An inequality improving the first Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2) (2002), Article 31, 8 pp. 
  7. Dragomir, S. S., An inequality improving the second Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (3) (2002), Article 35, 18 pp. 
  8. Dragomir, S. S., An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense 16 (2) (2003), 373-382. 
  9. Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer, New York, 2012. 
  10. Dragomir, S. S., Inequalities of Hermite–Hadamard type for GA-convex functions, Preprint RGMIA Res. Rep. Coll. 
  11. Dragomir, S. S., Cerone, P., Roumeliotis J., Wang, S., A weighted version of Ostrowski inequality for mappings of Holder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie 42 (90) (4) (1999), 301-314. 
  12. Dragomir, S. S., Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687-696. 
  13. Dragomir, S. S., Fitzpatrick, S., The Jensen inequality for s-Breckner convex functions in linear spaces, Demonstratio Math. 33 (1) (2000), 43-49. 
  14. Dragomir, S. S., Mond, B., On Hadamard’s inequality for a class of functions of Godunova and Levin, Indian J. Math. 39 (1) (1997), 1-9. 
  15. Dragomir, S. S., Pearce, C. E. M., On Jensen’s inequality for a class of functions of Godunova and Levin, Period. Math. Hungar. 33 (2) (1996), 93-100. 
  16. Dragomir, S. S., Pearce, C. E. M., Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385. 
  17. Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 [Online http://rgmia.org/monographs/hermite hadamard.html]. 
  18. Dragomir, S. S., Pecaric, J., Persson, L., Some inequalities of Hadamard type, Soochow J. Math. 21 (3) (1995), 335-341. 
  19. Dragomir, S. S., Rassias, Th. M., (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002. 
  20. El Farissi, A., Simple proof and refinement of Hermite–Hadamard inequality, J. Math.Ineq. 4 (3) (2010), 365-369. 
  21. Kirmaci, U. S., Klaricic Bakula, M., Ozdemir, M. E., Pecaric, J., Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (1) (2007), 26-35. 
  22. Latif, M. A., On some inequalities for h-convex functions, Int. J. Math. Anal. (Ruse) 4 (29–32) (2010), 1473-1482. 
  23. Mitrinovic, D. S., Lackovic, I. B., Hermite and convexity, Aequationes Math. 28 (1985), 229-232. 
  24. Mitrinovic, D. S., Pecaric, J. E., Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Canada 12 (1) (1990), 33-36. 
  25. Noor, M. A., Noor, K. I., Awan, M. U., Some inequalities for geometrically-arithmetically h-convex functions, Creat. Math. Inform. 23 (1) (2014), 91-98. 
  26. Pearce, C. E. M., Rubinov, A. M., P-functions, quasi-convex functions, and 
  27. Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1) (1999), 92-104. 
  28. Pecaric, J. E., Dragomir, S. S., On an inequality of Godunova-Levin and some refinements of Jensen integral inequality, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. “Babe's-Bolyai”, Cluj-Napoca, 1989. 
  29. Zhang, X.-M., Chu, Y.-M., Zhang, X.-H., The Hermite–Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl. vol. 2010, Article 507560, 11 pp. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.