On almost polynomial structures from classical linear connections

Anna Bednarska

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let f m be the category of m -dimensional manifolds and local diffeomorphisms and let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let  𝒱 m be the category of  m -dimensional real vector spaces and linear isomorphisms. Let w be a polynomial in one variable with real coefficients. We describe all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators P ˜ transforming classical linear connections on m -dimensional manifolds M into almost polynomial w -structures  P ˜ ( ) on F ( T ) M = x M F ( T x M ) .

How to cite

top

Anna Bednarska. "On almost polynomial structures from classical linear connections." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290763>.

@article{AnnaBednarska2018,
abstract = {Let $\mathcal \{M\}f_m$ be the category of $m$-dimensional manifolds and local diffeomorphisms and let $T$ be the tangent functor on $\mathcal \{M\}f_m$. Let $\mathcal \{V\}$ be the category of real vector spaces and linear maps and let  $\mathcal \{V\}_m$ be the category of  $m$-dimensional real vector spaces and linear isomorphisms. Let $w$ be a polynomial in one variable with real coefficients. We describe all regular covariant functors $F\colon \mathcal \{V\}_m\rightarrow \mathcal \{V\}$ admitting $\mathcal \{M\}f_m$-natural operators $\tilde\{P\}$ transforming classical linear connections $\nabla $ on $m$-dimensional manifolds $M$ into almost polynomial $w$-structures  $\tilde\{P\}(\nabla )$ on $F(T)M=\bigcup _\{x\in M\}F(T_xM)$.},
author = {Anna Bednarska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Classical linear connection; almost polynomial structure; Weil bundle; natural operator},
language = {eng},
number = {1},
pages = {null},
title = {On almost polynomial structures from classical linear connections},
url = {http://eudml.org/doc/290763},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Anna Bednarska
TI - On almost polynomial structures from classical linear connections
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - Let $\mathcal {M}f_m$ be the category of $m$-dimensional manifolds and local diffeomorphisms and let $T$ be the tangent functor on $\mathcal {M}f_m$. Let $\mathcal {V}$ be the category of real vector spaces and linear maps and let  $\mathcal {V}_m$ be the category of  $m$-dimensional real vector spaces and linear isomorphisms. Let $w$ be a polynomial in one variable with real coefficients. We describe all regular covariant functors $F\colon \mathcal {V}_m\rightarrow \mathcal {V}$ admitting $\mathcal {M}f_m$-natural operators $\tilde{P}$ transforming classical linear connections $\nabla $ on $m$-dimensional manifolds $M$ into almost polynomial $w$-structures  $\tilde{P}(\nabla )$ on $F(T)M=\bigcup _{x\in M}F(T_xM)$.
LA - eng
KW - Classical linear connection; almost polynomial structure; Weil bundle; natural operator
UR - http://eudml.org/doc/290763
ER -

References

top
  1. Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1) (1985), 81-98. 
  2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, Interscience Publisher, New York-London, 1963. 
  3. Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. 
  4. Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324. 
  5. Kurek, J., Mikulski, W. M., On almost complex structures from classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 71 (1) (2017), 55-60. 
  6. Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517-2519. 
  7. Libermann, P., Sur le probleme d’equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1954), 27-120. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.