On almost polynomial structures from classical linear connections
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)
- Volume: 72, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAnna Bednarska. "On almost polynomial structures from classical linear connections." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290763>.
@article{AnnaBednarska2018,
abstract = {Let $\mathcal \{M\}f_m$ be the category of $m$-dimensional manifolds and local diffeomorphisms and let $T$ be the tangent functor on $\mathcal \{M\}f_m$. Let $\mathcal \{V\}$ be the category of real vector spaces and linear maps and let $\mathcal \{V\}_m$ be the category of $m$-dimensional real vector spaces and linear isomorphisms. Let $w$ be a polynomial in one variable with real coefficients. We describe all regular covariant functors $F\colon \mathcal \{V\}_m\rightarrow \mathcal \{V\}$ admitting $\mathcal \{M\}f_m$-natural operators $\tilde\{P\}$ transforming classical linear connections $\nabla $ on $m$-dimensional manifolds $M$ into almost polynomial $w$-structures $\tilde\{P\}(\nabla )$ on $F(T)M=\bigcup _\{x\in M\}F(T_xM)$.},
author = {Anna Bednarska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Classical linear connection; almost polynomial structure; Weil bundle; natural operator},
language = {eng},
number = {1},
pages = {null},
title = {On almost polynomial structures from classical linear connections},
url = {http://eudml.org/doc/290763},
volume = {72},
year = {2018},
}
TY - JOUR
AU - Anna Bednarska
TI - On almost polynomial structures from classical linear connections
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - Let $\mathcal {M}f_m$ be the category of $m$-dimensional manifolds and local diffeomorphisms and let $T$ be the tangent functor on $\mathcal {M}f_m$. Let $\mathcal {V}$ be the category of real vector spaces and linear maps and let $\mathcal {V}_m$ be the category of $m$-dimensional real vector spaces and linear isomorphisms. Let $w$ be a polynomial in one variable with real coefficients. We describe all regular covariant functors $F\colon \mathcal {V}_m\rightarrow \mathcal {V}$ admitting $\mathcal {M}f_m$-natural operators $\tilde{P}$ transforming classical linear connections $\nabla $ on $m$-dimensional manifolds $M$ into almost polynomial $w$-structures $\tilde{P}(\nabla )$ on $F(T)M=\bigcup _{x\in M}F(T_xM)$.
LA - eng
KW - Classical linear connection; almost polynomial structure; Weil bundle; natural operator
UR - http://eudml.org/doc/290763
ER -
References
top- Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1) (1985), 81-98.
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, Interscience Publisher, New York-London, 1963.
- Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.
- Kurek, J., Mikulski, W. M., On almost complex structures from classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 71 (1) (2017), 55-60.
- Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517-2519.
- Libermann, P., Sur le probleme d’equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1954), 27-120.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.